Prediction of central nervous system embryonal tumour outcome based on gene expression
Author
Abstract
Suggested Citation
DOI: 10.1038/415436a
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:plo:pcbi00:1002511 is not listed on IDEAS
- Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
- Allison A. Appleton & Kevin C. Kiley & Lawrence M. Schell & Elizabeth A. Holdsworth & Anuoluwapo Akinsanya & Catherine Beecher, 2021. "Prenatal Lead and Depression Exposures Jointly Influence Birth Outcomes and NR3C1 DNA Methylation," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
- Ghosh, Santu & Ayyala, Deepak Nag & Hellebuyck, Rafael, 2021. "Two-sample high dimensional mean test based on prepivots," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- repec:plo:pone00:0167504 is not listed on IDEAS
- Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
- Outi Ruusunen & Marja Jalli & Lauri Jauhiainen & Mika Ruusunen & Kauko Leiviskä, 2022. "Identification of Optimal Starting Time Instance to Forecast Net Blotch Density in Spring Barley with Meteorological Data in Finland," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
- Ayça Çakmak Pehlivanlı, 2016. "A novel feature selection scheme for high-dimensional data sets: four-Staged Feature Selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1140-1154, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6870:d:10.1038_415436a. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.