IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6848d10.1038_35089104.html
   My bibliography  Save this article

A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria

Author

Listed:
  • E. J. Boekema

    (Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen)

  • A. Hifney

    (Biologie VIII: Zellphysiologie, Universität Bielefeld)

  • A. E. Yakushevska

    (Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen)

  • M. Piotrowski

    (Plant Physiology, Ruhr-University Bochum)

  • W. Keegstra

    (Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen)

  • S. Berry

    (Plant Biochemistry, Ruhr-University Bochum)

  • K.-P. Michel

    (Biologie VIII: Zellphysiologie, Universität Bielefeld)

  • E. K. Pistorius

    (Biologie VIII: Zellphysiologie, Universität Bielefeld)

  • J. Kruip

    (Plant Biochemistry, Ruhr-University Bochum)

Abstract

Cyanobacteria are abundant throughout most of the world's water bodies and contribute significantly to global primary productivity through oxygenic photosynthesis. This reaction is catalysed by two membrane-bound protein complexes, photosystem I (PSI) and photosystem II (PSII), which both contain chlorophyll-binding subunits functioning as an internal antenna1. In addition, phycobilisomes act as peripheral antenna systems, but no additional light-harvesting systems have been found under normal growth conditions. Iron deficiency, which is often the limiting factor for cyanobacterial growth in aquatic ecosystems2, leads to the induction of additional proteins such as IsiA (ref. 3). Although IsiA has been implicated in chlorophyll storage, energy absorption and protection against excessive light, its precise molecular function and association to other proteins is unknown. Here we report the purification of a specific PSI–IsiA supercomplex, which is abundant under conditions of iron limitation. Electron microscopy shows that this supercomplex consists of trimeric PSI surrounded by a closed ring of 18 IsiA proteins binding around 180 chlorophyll molecules. We provide a structural characterization of an additional chlorophyll-containing, membrane-integral antenna in a cyanobacterial photosystem.

Suggested Citation

  • E. J. Boekema & A. Hifney & A. E. Yakushevska & M. Piotrowski & W. Keegstra & S. Berry & K.-P. Michel & E. K. Pistorius & J. Kruip, 2001. "A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria," Nature, Nature, vol. 412(6848), pages 745-748, August.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6848:d:10.1038_35089104
    DOI: 10.1038/35089104
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35089104
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35089104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dvir Harris & Hila Toporik & Gabriela S. Schlau-Cohen & Yuval Mazor, 2023. "Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ryo Nagao & Koji Kato & Tasuku Hamaguchi & Yoshifumi Ueno & Naoki Tsuboshita & Shota Shimizu & Miyu Furutani & Shigeki Ehira & Yoshiki Nakajima & Keisuke Kawakami & Takehiro Suzuki & Naoshi Dohmae & S, 2023. "Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Nermin A. El Semary, 2022. "Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass," Sustainability, MDPI, vol. 14(16), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6848:d:10.1038_35089104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.