IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6783d10.1038_35012040.html
   My bibliography  Save this article

Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures

Author

Listed:
  • Traian Sarbu

    (University of Pittsburgh)

  • Thomas Styranec

    (University of Pittsburgh)

  • Eric J. Beckman

    (University of Pittsburgh)

Abstract

Liquid and supercritical carbon dioxide have attracted much interest as environmentally benign solvents1, but their practical use has been limited by the need for high CO2 pressures to dissolve even small amounts of polar, amphiphilic, organometallic, or high-molecular-mass compounds2,3,4. So-called ‘CO2-philes’ efficiently transport insoluble or poorly soluble materials into CO2 solvent, resulting in the development of a broad range of CO2-based processes, including homogeneous and heterogeneous polymerization, extraction of proteins and metals, and homogeneous catalysis5,6,7,8,9,10,11. But as the most effective CO2-philes are expensive fluorocarbons, such as poly(perfluoroether), the commercialization of otherwise promising CO2-based processes has met with only limited success. Here we show that copolymers can act as efficient, non-fluorous CO2-philes if their constituent monomers are chosen to optimize the balance between the enthalpy and entropy of solute–copolymer and copolymer–copolymer interactions. Guided by heuristic rules regarding these interactions, we have used inexpensive propylene and CO2 to synthesize a series of poly(ether-carbonate) copolymers that readily dissolve in CO2 at low pressures. Even though non-fluorous polymers are generally assumed to be CO2-phobic, we expect that our design principles can be used to create a wide range of non-fluorous CO2-philes from low-cost raw materials, thus rendering a variety of CO2-based processes economically favourable, particularly in cases where recycling of CO2-philes is difficult.

Suggested Citation

  • Traian Sarbu & Thomas Styranec & Eric J. Beckman, 2000. "Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures," Nature, Nature, vol. 405(6783), pages 165-168, May.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6783:d:10.1038_35012040
    DOI: 10.1038/35012040
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35012040
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35012040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qianhui & Ding, Lei & Zhao, Lun & Alhashboul, Almohannad A. & Almajid, Muhammad M. & Patil, Pramod & Zhao, Wenqi & Fan, Zifei, 2024. "CO2 soluble surfactants for carbon storage in carbonate saline aquifers with achievable injectivity: Implications from the continuous CO2 injection study," Energy, Elsevier, vol. 290(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6783:d:10.1038_35012040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.