IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6683d10.1038_30735.html
   My bibliography  Save this article

Visual input evokes transient and strong shunting inhibition in visual cortical neurons

Author

Listed:
  • Lyle J. Borg-Graham

    (Equipe Cognisciences, Institut Alfred Fessard, CNRS)

  • Cyril Monier

    (Equipe Cognisciences, Institut Alfred Fessard, CNRS)

  • Yves Frégnac

    (Equipe Cognisciences, Institut Alfred Fessard, CNRS)

Abstract

The function and nature of inhibition of neurons in the visual cortex have been the focus of both experimental and theoretical investigations1,2,3,4,5,6,7. There are two ways in which inhibition can suppress synaptic excitation2,8. In hyperpolarizing inhibition, negative and positive currents sum linearly to produce a net change in membrane potential. In contrast, shunting inhibition acts nonlinearly by causing an increase in membrane conductance; this divides the amplitude of the excitatory response. Visually evoked changes in membrane conductance have been reported to be nonsignificant or weak, supporting the hyperpolarization mode of inhibition3,9,10,11,12. Here we present a new approach to studying inhibition that is based on in vivo whole-cell voltage clamping. This technique allows the continuous measurement of conductance dynamics during visual activation. We show, in neurons of cat primary visual cortex, that the response to optimally orientated flashed bars can increase the somatic input conductance to more than three times that of the resting state. The short latency of the visually evoked peak of conductance, and its apparent reversal potential suggest a dominant contribution from γ-aminobutyric acid ((GABA)A) receptor-mediated synapses. We propose that nonlinear shunting inhibition may act during the initial stage of visual cortical processing, setting the balance between opponent ‘On’ and ‘Off’ responses in different locations of the visual receptive field.

Suggested Citation

  • Lyle J. Borg-Graham & Cyril Monier & Yves Frégnac, 1998. "Visual input evokes transient and strong shunting inhibition in visual cortical neurons," Nature, Nature, vol. 393(6683), pages 369-373, May.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6683:d:10.1038_30735
    DOI: 10.1038/30735
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/30735
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/30735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    2. Valentin Markounikau & Christian Igel & Amiram Grinvald & Dirk Jancke, 2010. "A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-14, September.
    3. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6683:d:10.1038_30735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.