IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i8d10.1038_s41893-018-0118-9.html
   My bibliography  Save this article

Recirculation of human-derived nutrients from cities to agriculture across six continents

Author

Listed:
  • John T. Trimmer

    (University of Illinois at Urbana-Champaign)

  • Jeremy S. Guest

    (University of Illinois at Urbana-Champaign)

Abstract

Recovering human-derived nutrients can advance circular economies by linking increasingly urban global populations with local cropland, offsetting unsustainable fertilizer use and improving access in low-income countries. For 56 of the world’s largest cities, we analyse co-location of urban nutrients with surrounding agricultural needs (that is, the degree to which recoverable nutrients spatially align with crop demands), defining paths forward to close urban nutrient cycles. Estimated nutrient transport distances, which may constrain what recovery strategies are locally feasible, span two orders of magnitude and are often shorter among European, African and Asian cities due to high local cropland density. We further examine how growing nutrient-intensive crops and recovering highly concentrated nutrient products could impact distance and energy requirements. Broadly, locations with high cropland density, nutrient-intensive crops and compact urban area may find agricultural nutrient reuse particularly impactful and achievable, creating opportunities to boost productivity by coupling urban water and regional agriculture systems.

Suggested Citation

  • John T. Trimmer & Jeremy S. Guest, 2018. "Recirculation of human-derived nutrients from cities to agriculture across six continents," Nature Sustainability, Nature, vol. 1(8), pages 427-435, August.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:8:d:10.1038_s41893-018-0118-9
    DOI: 10.1038/s41893-018-0118-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0118-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0118-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    2. Berta Moya & Ruben Sakrabani & Alison Parker, 2019. "Realizing the Circular Economy for Sanitation: Assessing Enabling Conditions and Barriers to the Commercialization of Human Excreta Derived Fertilizer in Haiti and Kenya," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    3. Anastasia Papangelou & Edgar Battand Towa Kouokam & Wouter Achten & Erik Mathijs, 2021. "A resource-based phosphorus footprint for urban diets," ULB Institutional Repository 2013/332187, ULB -- Universite Libre de Bruxelles.
    4. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Ariane Krause & Franziska Häfner & Florian Augustin & Kai M. Udert, 2021. "Qualitative Risk Analysis for Contents of Dry Toilets Used to Produce Novel Recycling Fertilizers," Circular Economy and Sustainability,, Springer.
    6. Julian Junghanns & Thomas Beery, 2020. "Ecological Sanitation and Sustainable Nutrient Recovery Education: Considering the Three Fixes for Environmental Problem-Solving," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    7. FRÓNA Dániel, 2020. "Factors Affecting Food Security," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 39-49, July.
    8. Biao Li & Yunting Feng & Xiqiang Xia & Mengjie Feng, 2021. "Evaluation of China’s Circular Agriculture Performance and Analysis of the Driving Factors," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    9. Lisa Harseim & Benjamin Sprecher & Cathrin Zengerling, 2021. "Phosphorus Governance within Planetary Boundaries: The Potential of Strategic Local Resource Planning in The Hague and Delfland, The Netherlands," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    10. Jean Pierre Enriquez, 2020. "Food Self-Sufficiency - Opportunities and Challenges for the Current Food System," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 31(2), pages 23984-23989, October.
    11. Daniel Puente-Rodríguez & Harmen van Laar & Maayke Veraart, 2022. "A Circularity Evaluation of New Feed Categories in The Netherlands—Squaring the Circle: A Review," Sustainability, MDPI, vol. 14(4), pages 1-27, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:8:d:10.1038_s41893-018-0118-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.