IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v9y2025i6d10.1038_s41562-025-02157-x.html
   My bibliography  Save this article

Human motor cortex encodes complex handwriting through a sequence of stable neural states

Author

Listed:
  • Yu Qi

    (Zhejiang University
    NANHU Brain-Computer Interface Institute
    Zhejiang University
    Zhejiang University)

  • Xinyun Zhu

    (Zhejiang University)

  • Xinzhu Xiong

    (Zhejiang University)

  • Xiaomeng Yang

    (Zhejiang University)

  • Nai Ding

    (Zhejiang University)

  • Hemmings Wu

    (Second Affiliated Hospital of Zhejiang University School of Medicine)

  • Kedi Xu

    (Zhejiang University)

  • Junming Zhu

    (Second Affiliated Hospital of Zhejiang University School of Medicine)

  • Jianmin Zhang

    (Second Affiliated Hospital of Zhejiang University School of Medicine)

  • Yueming Wang

    (NANHU Brain-Computer Interface Institute
    Zhejiang University)

Abstract

How the human motor cortex (MC) orchestrates sophisticated sequences of fine movements such as handwriting remains a puzzle. Here we investigate this question through Utah array recordings from human MC during attempted handwriting of Chinese characters (n = 306, each consisting of 6.3 ± 2.0 strokes). We find that MC activity evolves through a sequence of states corresponding to the writing of stroke fragments during complicated handwriting. The directional tuning curve of MC neurons remains stable within states, but its gain or preferred direction strongly varies across states. By building models that can automatically infer the neural states and implement state-dependent directional tuning, we can significantly better explain the firing pattern of individual neurons and reconstruct recognizable handwriting trajectories with 69% improvement compared with baseline models. Our findings unveil that skilled and sophisticated movements are encoded through state-specific neural configurations.

Suggested Citation

  • Yu Qi & Xinyun Zhu & Xinzhu Xiong & Xiaomeng Yang & Nai Ding & Hemmings Wu & Kedi Xu & Junming Zhu & Jianmin Zhang & Yueming Wang, 2025. "Human motor cortex encodes complex handwriting through a sequence of stable neural states," Nature Human Behaviour, Nature, vol. 9(6), pages 1260-1271, June.
  • Handle: RePEc:nat:nathum:v:9:y:2025:i:6:d:10.1038_s41562-025-02157-x
    DOI: 10.1038/s41562-025-02157-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-025-02157-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-025-02157-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Leigh R. Hochberg & Daniel Bacher & Beata Jarosiewicz & Nicolas Y. Masse & John D. Simeral & Joern Vogel & Sami Haddadin & Jie Liu & Sydney S. Cash & Patrick van der Smagt & John P. Donoghue, 2012. "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm," Nature, Nature, vol. 485(7398), pages 372-375, May.
    2. Michael Linderman & Mikhail A Lebedev & Joseph S Erlichman, 2009. "Recognition of Handwriting from Electromyography," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-8, August.
    3. Arjun R. Khanna & William Muñoz & Young Joon Kim & Yoav Kfir & Angelique C. Paulk & Mohsen Jamali & Jing Cai & Martina L. Mustroph & Irene Caprara & Richard Hardstone & Mackenna Mejdell & Domokos Mesz, 2024. "Single-neuronal elements of speech production in humans," Nature, Nature, vol. 626(7999), pages 603-610, February.
    4. Wolfgang Omlor & Anna-Sophia Wahl & Pia Sipilä & Henry Lütcke & Balazs Laurenczy & I-Wen Chen & Lazar T. Sumanovski & Marcel van ’t Hoff & Philipp Bethge & Fabian F. Voigt & Martin E. Schwab & Fritjof, 2019. "Context-dependent limb movement encoding in neuronal populations of motor cortex," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    5. Yoh Inoue & Hongwei Mao & Steven B. Suway & Josue Orellana & Andrew B. Schwartz, 2018. "Decoding arm speed during reaching," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    6. Francis R. Willett & Donald T. Avansino & Leigh R. Hochberg & Jaimie M. Henderson & Krishna V. Shenoy, 2021. "High-performance brain-to-text communication via handwriting," Nature, Nature, vol. 593(7858), pages 249-254, May.
    7. Frederic A. Roemschied & Diego A. Pacheco & Max J. Aragon & Elise C. Ireland & Xinping Li & Kyle Thieringer & Rich Pang & Mala Murthy, 2023. "Flexible circuit mechanisms for context-dependent song sequencing," Nature, Nature, vol. 622(7984), pages 794-801, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yidan Ding & Chalisa Udompanyawit & Yisha Zhang & Bin He, 2025. "EEG-based brain-computer interface enables real-time robotic hand control at individual finger level," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    2. Jeffrey D. Laurence-Chasen & Callum F. Ross & Fritzie I. Arce-McShane & Nicholas G. Hatsopoulos, 2023. "Robust cortical encoding of 3D tongue shape during feeding in macaques," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    4. Shanqing Cai & Subhashini Venugopalan & Katie Seaver & Xiang Xiao & Katrin Tomanek & Sri Jalasutram & Meredith Ringel Morris & Shaun Kane & Ajit Narayanan & Robert L. MacDonald & Emily Kornman & Danie, 2024. "Using large language models to accelerate communication for eye gaze typing users with ALS," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Baoguo Xu & Wenlong Li & Deping Liu & Kun Zhang & Minmin Miao & Guozheng Xu & Aiguo Song, 2022. "Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    7. Fan Li & Jazlyn Gallego & Natasha N. Tirko & Jenna Greaser & Derek Bashe & Rudra Patel & Eric Shaker & Grace E. Valkenburg & Alanoud S. Alsubhi & Steven Wellman & Vanshika Singh & Camila Garcia Padill, 2024. "Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Xiao-yu Sun & Bin Ye, 2023. "The functional differentiation of brain–computer interfaces (BCIs) and its ethical implications," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    9. Lukas K. Amann & Virginia Casasnovas & Alexander Gail, 2025. "Visual target and task-critical feedback uncertainty impair different stages of reach planning in motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Eric A Pohlmeyer & Babak Mahmoudi & Shijia Geng & Noeline W Prins & Justin C Sanchez, 2014. "Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    11. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    12. Fuji Ren & Yanwei Bao, 2020. "A Review on Human-Computer Interaction and Intelligent Robots," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 5-47, February.
    13. Xingzhao Wang & Shun Wu & Hantao Yang & Yu Bao & Zhi Li & Changchun Gan & Yuanyuan Deng & Junyan Cao & Xue Li & Yun Wang & Chi Ren & Zhigang Yang & Zhengtuo Zhao, 2024. "Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Naohiko Okabe & Xiaofei Wei & Farah Abumeri & Jonathan Batac & Mary Hovanesyan & Weiye Dai & Srbui Azarapetian & Jesus Campagna & Nadia Pilati & Agostino Marasco & Giuseppe Alvaro & Martin J. Gunthorp, 2025. "Parvalbumin interneurons regulate rehabilitation-induced functional recovery after stroke and identify a rehabilitation drug," Nature Communications, Nature, vol. 16(1), pages 1-25, December.
    15. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Javier M Antelis & Luis Montesano & Ander Ramos-Murguialday & Niels Birbaumer & Javier Minguez, 2013. "On the Usage of Linear Regression Models to Reconstruct Limb Kinematics from Low Frequency EEG Signals," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    17. Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
    18. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    19. Keundong Lee & Angelique C. Paulk & Yun Goo Ro & Daniel R. Cleary & Karen J. Tonsfeldt & Yoav Kfir & John S. Pezaris & Youngbin Tchoe & Jihwan Lee & Andrew M. Bourhis & Ritwik Vatsyayan & Joel R. Mart, 2024. "Flexible, scalable, high channel count stereo-electrode for recording in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Gerard Derosiere & Solaiman Shokur & Pierre Vassiliadis, 2025. "Reward signals in the motor cortex: from biology to neurotechnology," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:9:y:2025:i:6:d:10.1038_s41562-025-02157-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.