IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07317-4.html
   My bibliography  Save this article

Autapses enhance bursting and coincidence detection in neocortical pyramidal cells

Author

Listed:
  • Luping Yin

    (Beijing Normal University
    University of Chinese Academy of Sciences)

  • Rui Zheng

    (Beijing Normal University
    University of Chinese Academy of Sciences)

  • Wei Ke

    (Beijing Normal University)

  • Quansheng He

    (Beijing Normal University)

  • Yi Zhang

    (Beijing Normal University)

  • Junlong Li

    (Beijing Normal University)

  • Bo Wang

    (Beijing Normal University
    University of Chinese Academy of Sciences)

  • Zhen Mi

    (Beijing Normal University)

  • Yue-sheng Long

    (Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University)

  • Malte J. Rasch

    (Beijing Normal University)

  • Tianfu Li

    (Capital Medical University)

  • Guoming Luan

    (Capital Medical University)

  • Yousheng Shu

    (Beijing Normal University)

Abstract

Autapses are synaptic contacts of a neuron’s axon onto its own dendrite and soma. In the neocortex, self-inhibiting autapses in GABAergic interneurons are abundant in number and play critical roles in regulating spike precision and network activity. Here we examine whether the principal glutamatergic pyramidal cells (PCs) also form functional autapses. In patch-clamp recording from both rodent and human PCs, we isolated autaptic responses and found that these occur predominantly in layer-5 PCs projecting to subcortical regions, with very few in those projecting to contralateral prefrontal cortex and layer 2/3 PCs. Moreover, PC autapses persist during development into adulthood. Surprisingly, they produce giant postsynaptic responses (∼5 fold greater than recurrent PC-PC synapses) that are exclusively mediated by AMPA receptors. Upon activation, autapses enhance burst firing, neuronal responsiveness and coincidence detection of synaptic inputs. These findings indicate that PC autapses are functional and represent an important circuit element in the neocortex.

Suggested Citation

  • Luping Yin & Rui Zheng & Wei Ke & Quansheng He & Yi Zhang & Junlong Li & Bo Wang & Zhen Mi & Yue-sheng Long & Malte J. Rasch & Tianfu Li & Guoming Luan & Yousheng Shu, 2018. "Autapses enhance bursting and coincidence detection in neocortical pyramidal cells," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07317-4
    DOI: 10.1038/s41467-018-07317-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07317-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07317-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    2. Wang, Xianjun & Gu, Huaguang & Jia, Yanbing, 2023. "Nonlinear mechanism for enhanced and reduced bursting activity respectively induced by fast and slow excitatory autapse," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Lu, Bo & Gu, Huaguang & Wang, Xianjun & Hua, Hongtao, 2021. "Paradoxical enhancement of neuronal bursting response to negative feedback of autapse and the nonlinear mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07317-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.