IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11990.html
   My bibliography  Save this article

Specific frontal neural dynamics contribute to decisions to check

Author

Listed:
  • Frederic M. Stoll

    (Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208)

  • Vincent Fontanier

    (Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208)

  • Emmanuel Procyk

    (Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208)

Abstract

Curiosity and information seeking potently shapes our behaviour and are thought to rely on the frontal cortex. Yet, the frontal regions and neural dynamics that control the drive to check for information remain unknown. Here we trained monkeys in a task where they had the opportunity to gain information about the potential delivery of a large bonus reward or continue with a default instructed decision task. Single-unit recordings in behaving monkeys reveal that decisions to check for additional information first engage midcingulate cortex and then lateral prefrontal cortex. The opposite is true for instructed decisions. Importantly, deciding to check engages neurons also involved in performance monitoring. Further, specific midcingulate activity could be discerned several trials before the monkeys actually choose to check the environment. Our data show that deciding to seek information on the current state of the environment is characterized by specific dynamics of neural activity within the prefrontal cortex.

Suggested Citation

  • Frederic M. Stoll & Vincent Fontanier & Emmanuel Procyk, 2016. "Specific frontal neural dynamics contribute to decisions to check," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11990
    DOI: 10.1038/ncomms11990
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11990
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christine Beauchene & Silu Men & Thomas Hinault & Susan M. Courtney & Sridevi V. Sarma, 2022. "Using Neural Networks to Uncover the Relationship between Highly Variable Behavior and EEG during a Working Memory Task with Distractors," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    2. Haoyang Lu & Li Yi & Hang Zhang, 2019. "Autistic traits influence the strategic diversity of information sampling: Insights from two-stage decision models," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-29, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.