IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10976.html
   My bibliography  Save this article

A general approach to visualize protein binding and DNA conformation without protein labelling

Author

Listed:
  • Dan Song

    (Harvard Biophysics Program, Harvard Medical School
    Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA)

  • Thomas G. W. Graham

    (Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
    Harvard Medical School)

  • Joseph J. Loparo

    (Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA)

Abstract

Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions.

Suggested Citation

  • Dan Song & Thomas G. W. Graham & Joseph J. Loparo, 2016. "A general approach to visualize protein binding and DNA conformation without protein labelling," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10976
    DOI: 10.1038/ncomms10976
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10976
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Shlosman & Elayne M. Fivenson & Morgan S. A. Gilman & Tyler A. Sisley & Suzanne Walker & Thomas G. Bernhardt & Andrew C. Kruse & Joseph J. Loparo, 2023. "Allosteric activation of cell wall synthesis during bacterial growth," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.