IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9508.html
   My bibliography  Save this article

A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

Author

Listed:
  • Vijay S. Vyas

    (Max Planck Institute for Solid State Research)

  • Frederik Haase

    (Max Planck Institute for Solid State Research
    University of Munich (LMU))

  • Linus Stegbauer

    (Max Planck Institute for Solid State Research
    University of Munich (LMU))

  • Gökcen Savasci

    (University of Munich (LMU))

  • Filip Podjaski

    (Max Planck Institute for Solid State Research)

  • Christian Ochsenfeld

    (University of Munich (LMU)
    Center for Integrated Protein Science (CIPSM), University of Munich (LMU))

  • Bettina V. Lotsch

    (Max Planck Institute for Solid State Research
    University of Munich (LMU)
    Nanosystems Initiative Munich (NIM) and Center for Nanoscience)

Abstract

Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

Suggested Citation

  • Vijay S. Vyas & Frederik Haase & Linus Stegbauer & Gökcen Savasci & Filip Podjaski & Christian Ochsenfeld & Bettina V. Lotsch, 2015. "A tunable azine covalent organic framework platform for visible light-induced hydrogen generation," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9508
    DOI: 10.1038/ncomms9508
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9508
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rengan Luo & Haifeng Lv & Qiaobo Liao & Ningning Wang & Jiarui Yang & Yang Li & Kai Xi & Xiaojun Wu & Huangxian Ju & Jianping Lei, 2021. "Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    4. Yajun Zou & Sara Abednatanzi & Parviz Gohari Derakhshandeh & Stefano Mazzanti & Christoph M. Schüßlbauer & Daniel Cruz & Pascal Voort & Jian-Wen Shi & Markus Antonietti & Dirk M. Guldi & Aleksandr Sav, 2022. "Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xiaoyi Xu & Xinyu Wu & Kai Xu & Hong Xu & Hongzheng Chen & Ning Huang, 2023. "Pore partition in two-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Chih-Li Chang & Wei-Cheng Lin & Li-Yu Ting & Chin-Hsuan Shih & Shih-Yuan Chen & Tse-Fu Huang & Hiroyuki Tateno & Jayachandran Jayakumar & Wen-Yang Jao & Chen-Wei Tai & Che-Yi Chu & Chin-Wen Chen & Chi, 2022. "Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.