IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7953.html
   My bibliography  Save this article

Behavioural correlates of combinatorial versus temporal features of odour codes

Author

Listed:
  • Debajit Saha

    (Washington University in St Louis)

  • Chao Li

    (Washington University in St Louis)

  • Steven Peterson

    (Washington University in St Louis)

  • William Padovano

    (Washington University in St Louis)

  • Nalin Katta

    (Washington University in St Louis)

  • Baranidharan Raman

    (Washington University in St Louis)

Abstract

Most sensory stimuli evoke spiking responses that are distributed across neurons and are temporally structured. Whether the temporal structure of ensemble activity is modulated to facilitate different neural computations is not known. Here, we investigated this issue in the insect olfactory system. We found that an odourant can generate synchronous or asynchronous spiking activity across a neural ensemble in the antennal lobe circuit depending on its relative novelty with respect to a preceding stimulus. Regardless of variations in temporal spiking patterns, the activated combinations of neurons robustly represented stimulus identity. Consistent with this interpretation, locusts reliably recognized both solitary and sequential introductions of trained odourants in a quantitative behavioural assay. However, predictable behavioural responses across locusts were observed only to novel stimuli that evoked synchronized spiking patterns across neural ensembles. Hence, our results indicate that the combinatorial ensemble response encodes for stimulus identity, whereas the temporal structure of the ensemble response selectively emphasizes novel stimuli.

Suggested Citation

  • Debajit Saha & Chao Li & Steven Peterson & William Padovano & Nalin Katta & Baranidharan Raman, 2015. "Behavioural correlates of combinatorial versus temporal features of odour codes," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7953
    DOI: 10.1038/ncomms7953
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7953
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rishabh Chandak & Baranidharan Raman, 2023. "Neural manifolds for odor-driven innate and acquired appetitive preferences," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.