IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7845.html
   My bibliography  Save this article

Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa

Author

Listed:
  • Alvaro San Millan

    (University of Oxford)

  • Macarena Toll-Riera

    (University of Oxford
    Present address: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland)

  • Qin Qi

    (University of Oxford)

  • R. Craig MacLean

    (University of Oxford)

Abstract

Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT.

Suggested Citation

  • Alvaro San Millan & Macarena Toll-Riera & Qin Qi & R. Craig MacLean, 2015. "Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7845
    DOI: 10.1038/ncomms7845
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7845
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Amjad & Wahl, Lindi M., 2020. "Quantifying the forces that maintain prophages in bacterial genomes," Theoretical Population Biology, Elsevier, vol. 133(C), pages 168-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.