IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7181.html
   My bibliography  Save this article

Ultimately short ballistic vertical graphene Josephson junctions

Author

Listed:
  • Gil-Ho Lee

    (Pohang University of Science and Technology
    Present address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA)

  • Sol Kim

    (Pohang University of Science and Technology)

  • Seung-Hoon Jhi

    (Pohang University of Science and Technology)

  • Hu-Jong Lee

    (Pohang University of Science and Technology)

Abstract

Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.

Suggested Citation

  • Gil-Ho Lee & Sol Kim & Seung-Hoon Jhi & Hu-Jong Lee, 2015. "Ultimately short ballistic vertical graphene Josephson junctions," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7181
    DOI: 10.1038/ncomms7181
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7181
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Guang Chu & Jing-Jing Chen & An-Qi Wang & Zhen-Bing Tan & Cai-Zhen Li & Chuan Li & Alexander Brinkman & Peng-Zhan Xiang & Na Li & Zhen-Cun Pan & Hai-Zhou Lu & Dapeng Yu & Zhi-Min Liao, 2023. "Broad and colossal edge supercurrent in Dirac semimetal Cd3As2 Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.