IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011482.html
   My bibliography  Save this article

Probing Topological Superconductivity of oxide nanojunctions using fractional Shapiro steps

Author

Listed:
  • Guarcello, Claudio
  • Maiellaro, Alfonso
  • Settino, Jacopo
  • Gaiardoni, Irene
  • Trama, Mattia
  • Romeo, Francesco
  • Citro, Roberta

Abstract

We theoretically discuss the emergence of fractional Shapiro steps in a Josephson junction created by confining a two-dimensional electron gas at an oxide interface. This phenomenon is induced by an alternating current of proper amplitude and frequency and can be tuned by a magnetic field applied perpendicular to the Rashba spin–orbit axis. The presence of fractional Shapiro steps can be associated with the creation of Majorana bound states at the boundaries of the superconducting leads. Our findings represent a route for the identification of topological superconductivity in non-centrosymmetric materials and confined systems in the presence of spin–orbit interaction, offering also new insights into recently explored frameworks.

Suggested Citation

  • Guarcello, Claudio & Maiellaro, Alfonso & Settino, Jacopo & Gaiardoni, Irene & Trama, Mattia & Romeo, Francesco & Citro, Roberta, 2024. "Probing Topological Superconductivity of oxide nanojunctions using fractional Shapiro steps," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011482
    DOI: 10.1016/j.chaos.2024.115596
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Tiira & E. Strambini & M. Amado & S. Roddaro & P. San-Jose & R. Aguado & F. S. Bergeret & D. Ercolani & L. Sorba & F. Giazotto, 2017. "Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Gil-Ho Lee & Sol Kim & Seung-Hoon Jhi & Hu-Jong Lee, 2015. "Ultimately short ballistic vertical graphene Josephson junctions," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    3. Arjun Joshua & S. Pecker & J. Ruhman & E. Altman & S. Ilani, 2012. "A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rikizo Yano & Shota Nagasaka & Naoki Matsubara & Kazushige Saigusa & Tsuyoshi Tanda & Seiichiro Ito & Ai Yamakage & Yoshihiko Okamoto & Koshi Takenaka & Satoshi Kashiwaya, 2023. "Evidence of unconventional superconductivity on the surface of the nodal semimetal CaAg1−xPdxP," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Chun-Guang Chu & Jing-Jing Chen & An-Qi Wang & Zhen-Bing Tan & Cai-Zhen Li & Chuan Li & Alexander Brinkman & Peng-Zhan Xiang & Na Li & Zhen-Cun Pan & Hai-Zhou Lu & Dapeng Yu & Zhi-Min Liao, 2023. "Broad and colossal edge supercurrent in Dirac semimetal Cd3As2 Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Aditi Nethwewala & Hyungwoo Lee & Jianan Li & Megan Briggeman & Yun-Yi Pai & Kitae Eom & Chang-Beom Eom & Patrick Irvin & Jeremy Levy, 2023. "Electron pairing and nematicity in LaAlO3/SrTiO3 nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.