IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms6420.html
   My bibliography  Save this article

A minimal physical model captures the shapes of crawling cells

Author

Listed:
  • E. Tjhung

    (SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings)

  • A. Tiribocchi

    (SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings)

  • D. Marenduzzo

    (SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings)

  • M. E. Cates

    (SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings)

Abstract

Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. Here we present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work strongly supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

Suggested Citation

  • E. Tjhung & A. Tiribocchi & D. Marenduzzo & M. E. Cates, 2015. "A minimal physical model captures the shapes of crawling cells," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6420
    DOI: 10.1038/ncomms6420
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6420
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Negro, G. & Carenza, L.N. & Digregorio, P. & Gonnella, G. & Lamura, A., 2018. "Morphology and flow patterns in highly asymmetric active emulsions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 464-475.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.