IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4082.html
   My bibliography  Save this article

Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces

Author

Listed:
  • Sumanjeet Kaur

    (Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Nachiket Raravikar

    (Assembly and test technology development, Intel Corporation)

  • Brett A. Helms

    (Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Ravi Prasher

    (School of Engineering Matter, Transport and Energy, Arizona State University
    Sheetak Inc.)

  • D. Frank Ogletree

    (Molecular Foundry, Lawrence Berkeley National Laboratory)

Abstract

It has been more than a decade since the experimental demonstration that the thermal conductivity of carbon nanotubes can exceed that of diamond, which has the highest thermal conductivity among naturally occurring materials. In spite of tremendous promise as a thermal material, results have been disappointing for practical thermal systems and applications based on nanotubes. The main culprit for the dramatic shortfall in the performance of nanotubes in practical systems is high thermal interface resistance between them and other components because of weak adhesion at the interface. Here we report a sixfold reduction in the thermal interface resistance between metal surfaces and vertically aligned multiwall carbon nanotube arrays by bridging the interface with short, covalently bonded organic molecules. These results are also significant for single and multilayer graphene applications, since graphene faces similar limitations in practical systems.

Suggested Citation

  • Sumanjeet Kaur & Nachiket Raravikar & Brett A. Helms & Ravi Prasher & D. Frank Ogletree, 2014. "Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4082
    DOI: 10.1038/ncomms4082
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4082
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasano, Matteo & Bozorg Bigdeli, Masoud & Vaziri Sereshk, Mohammad Rasool & Chiavazzo, Eliodoro & Asinari, Pietro, 2015. "Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1028-1036.
    2. Andreas Nylander & Josef Hansson & Majid Kabiri Samani & Christian Chandra Darmawan & Ana Borta Boyon & Laurent Divay & Lilei Ye & Yifeng Fu & Afshin Ziaei & Johan Liu, 2019. "Reliability Investigation of a Carbon Nanotube Array Thermal Interface Material," Energies, MDPI, vol. 12(11), pages 1-10, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.