IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3438.html
   My bibliography  Save this article

Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries

Author

Listed:
  • Ji-Jing Xu

    (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Zhong-Li Wang

    (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Dan Xu

    (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

  • Lei-Lei Zhang

    (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin-Bo Zhang

    (State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)

Abstract

Lithium-oxygen batteries are an attractive technology for electrical energy storage because of their exceptionally high-energy density; however, battery applications still suffer from low rate capability, poor cycle stability and a shortage of stable electrolytes. Here we report design and synthesis of a free-standing honeycomb-like palladium-modified hollow spherical carbon deposited onto carbon paper, as a cathode for a lithium-oxygen battery. The battery is capable of operation with high-rate (5,900 mAh g−1 at a current density of 1.5 A g−1) and long-term (100 cycles at a current density of 300 mA g−1 and a specific capacity limit of 1,000 mAh g−1). These properties are explained by the tailored deposition and morphology of the discharge products as well as the alleviated electrolyte decomposition compared with the conventional carbon cathodes. The encouraging performance also offers hope to design more advanced cathode architectures for lithium-oxygen batteries.

Suggested Citation

  • Ji-Jing Xu & Zhong-Li Wang & Dan Xu & Lei-Lei Zhang & Xin-Bo Zhang, 2013. "Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3438
    DOI: 10.1038/ncomms3438
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3438
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
    2. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.