IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2067.html
   My bibliography  Save this article

The elusive Heisenberg limit in quantum-enhanced metrology

Author

Listed:
  • Rafał Demkowicz-Dobrzański

    (Faculty of Physics, University of Warsaw)

  • Jan Kołodyński

    (Faculty of Physics, University of Warsaw)

  • Mădălin Guţă

    (School of Mathematical Sciences, University of Nottingham)

Abstract

Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss.

Suggested Citation

  • Rafał Demkowicz-Dobrzański & Jan Kołodyński & Mădălin Guţă, 2012. "The elusive Heisenberg limit in quantum-enhanced metrology," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2067
    DOI: 10.1038/ncomms2067
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2067
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, W.W. & Li, B. & Gong, L.Y. & Zhao, S.M., 2022. "Quantum speed limit and topological quantum phase transition in an extended XY model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. W. Wang & Z.-J. Chen & X. Liu & W. Cai & Y. Ma & X. Mu & X. Pan & Z. Hua & L. Hu & Y. Xu & H. Wang & Y. P. Song & X.-B. Zou & C.-L. Zou & L. Sun, 2022. "Quantum-enhanced radiometry via approximate quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.