IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v1y2010i1d10.1038_ncomms1063.html
   My bibliography  Save this article

Sustaining the Internet with hyperbolic mapping

Author

Listed:
  • Marián Boguñá

    (Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1)

  • Fragkiskos Papadopoulos

    (University of Cyprus, Kallipoleos 75)

  • Dmitri Krioukov

    (Cooperative Association for Internet Data Analysis, University of California, San Diego)

Abstract

The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet—routing information packets between any two computers in the world—cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. In this paper, we present a method to map the Internet to a hyperbolic space. Guided by a constructed map, which we release with this paper, Internet routing exhibits scaling properties that are theoretically close to the best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks.

Suggested Citation

  • Marián Boguñá & Fragkiskos Papadopoulos & Dmitri Krioukov, 2010. "Sustaining the Internet with hyperbolic mapping," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1063
    DOI: 10.1038/ncomms1063
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1063
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksim Kitsak & Ahmed Elmokashfi & Shlomo Havlin & Dmitri Krioukov, 2015. "Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    2. Robert Jankowski & Antoine Allard & Marián Boguñá & M. Ángeles Serrano, 2023. "The D-Mercator method for the multidimensional hyperbolic embedding of real networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    4. Maksim Kitsak & Alexander Ganin & Ahmed Elmokashfi & Hongzhu Cui & Daniel A. Eisenberg & David L. Alderson & Dmitry Korkin & Igor Linkov, 2023. "Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Ma, Lili & Jiang, Xin & Wu, Kaiyuan & Zhang, Zhanli & Tang, Shaoting & Zheng, Zhiming, 2012. "Surveying network community structure in the hidden metric space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 371-378.
    6. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    7. Kelly B. Yancey & Matthew P. Yancey, 0. "Bipartite communities via spectral partitioning," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-34.
    8. Wang, Zuxi & Li, Qingguang & Xiong, Wei & Jin, Fengdong & Wu, Yao, 2016. "Fast community detection based on sector edge aggregation metric model in hyperbolic space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 178-191.
    9. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    10. Ma, Lili, 2019. "Studying node centrality based on the hidden hyperbolic metric space of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 426-434.
    11. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    12. Kelly B. Yancey & Matthew P. Yancey, 2022. "Bipartite communities via spectral partitioning," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1995-2028, October.
    13. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    14. Wang, Zuxi & Li, Qingguang & Jin, Fengdong & Xiong, Wei & Wu, Yao, 2016. "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 104-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.