IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65713-z.html
   My bibliography  Save this article

The methyl-CpG-binding protein 2 inhibits cGAS-associated signaling

Author

Listed:
  • Hanane Chamma

    (Université de Montpellier)

  • Soumyabrata Guha

    (Université de Montpellier)

  • Roger Junior Eloiflin

    (Université de Montpellier)

  • Adeline Augereau

    (Université de Montpellier)

  • Pierre Le Hars

    (Université de Montpellier)

  • Moritz Schüssler

    (Université de Montpellier)

  • Yasmine Messaoud-Nacer

    (Université de Montpellier)

  • Mohammad Salma

    (Université de Montpellier)

  • Joe McKellar

    (Université de Montpellier)

  • Joanna Re

    (Université de Montpellier)

  • Morgane Chemarin

    (Université de Montpellier)

  • Arnaud Carrier

    (Université de Montpellier)

  • Michael A. Disyak

    (Université de Montpellier)

  • Clara Taffoni

    (Université de Montpellier)

  • Robin Charpentier

    (Université de Montpellier)

  • Zoé Husson

    (Université de Montpelier)

  • Emmanuel Valjent

    (Université de Montpellier)

  • Charlotte Andrieu-Soler

    (Université de Montpellier
    Laboratory of Excellence GR-Ex)

  • Eric Soler

    (Université de Montpellier
    Laboratory of Excellence GR-Ex)

  • Maria H. Christensen

    (University of Bonn
    Aarhus University)

  • Søren R. Paludan

    (Aarhus University
    Aarhus University)

  • Florian I. Schmidt

    (University of Bonn)

  • Daniela Tropea

    (St James Hospital
    Trinity College Dublin
    Lloyd Building)

  • Karim Majzoub

    (Université de Montpellier)

  • Isabelle K. Vila

    (Université de Montpellier)

  • Nadine Laguette

    (Université de Montpellier)

Abstract

The detection of cytosolic dsDNA by the cyclic GMP-AMP synthase (cGAS) is tightly regulated to avoid pathological inflammatory responses. Here, we show that the methyl-CpG-binding protein 2 (MeCP2), a major transcriptional regulator, controls dsDNA-associated inflammatory responses. The presence of cytosolic dsDNA promotes MeCP2 export from the nucleus to the cytosol where it interacts with dsDNA, dampening detection by cGAS. MeCP2 export partially phenocopies MeCP2 deficiency, leading to innate immune activation and enforcing an antiviral state. Finally, MeCP2 displacement from the nucleus following dsDNA stimulation disrupts its canonical function, leading to the reactivation of otherwise repressed genes, such as endogenous retroelements. Re-expression of the latter leads to the accumulation of DNA species feeding cGAS-dependent signalling. We thus establish a direct role of MeCP2 in the regulation of the breadth and nature of dsDNA-associated inflammatory responses and suggest targeting dsDNA-associated pathways or endogenous retroelements as therapeutic options for patients with MeCP2 deficiency.

Suggested Citation

  • Hanane Chamma & Soumyabrata Guha & Roger Junior Eloiflin & Adeline Augereau & Pierre Le Hars & Moritz Schüssler & Yasmine Messaoud-Nacer & Mohammad Salma & Joe McKellar & Joanna Re & Morgane Chemarin , 2025. "The methyl-CpG-binding protein 2 inhibits cGAS-associated signaling," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65713-z
    DOI: 10.1038/s41467-025-65713-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65713-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65713-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Ablasser & Marion Goldeck & Taner Cavlar & Tobias Deimling & Gregor Witte & Ingo Röhl & Karl-Peter Hopfner & Janos Ludwig & Veit Hornung, 2013. "cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING," Nature, Nature, vol. 498(7454), pages 380-384, June.
    2. Alysson R. Muotri & Maria C. N. Marchetto & Nicole G. Coufal & Ruth Oefner & Gene Yeo & Kinichi Nakashima & Fred H. Gage, 2010. "L1 retrotransposition in neurons is modulated by MeCP2," Nature, Nature, vol. 468(7322), pages 443-446, November.
    3. Hiroki Ishikawa & Zhe Ma & Glen N. Barber, 2009. "STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity," Nature, Nature, vol. 461(7265), pages 788-792, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Niranjana Natarajan & Jonathan Florentin & Ebin Johny & Hanxi Xiao & Scott Patrick O’Neil & Liqun Lei & Jixing Shen & Lee Ohayon & Aaron R. Johnson & Krithika Rao & Xiaoyun Li & Yanwu Zhao & Yingze Zh, 2024. "Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Lingzhen Kong & Chen Cheng & Abigael Cheruiyot & Jiayi Yuan & Yichan Yang & Sydney Hwang & Daniel Foust & Ning Tsao & Emily Wilkerson & Nima Mosammaparast & Michael B. Major & David W. Piston & Shan L, 2024. "TCAF1 promotes TRPV2-mediated Ca2+ release in response to cytosolic DNA to protect stressed replication forks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    5. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Tomalika R. Ullah & Matt D. Johansen & Katherine R. Balka & Rebecca L. Ambrose & Linden J. Gearing & James Roest & Julian P. Vivian & Sunil Sapkota & W. Samantha N. Jayasekara & Daniel S. Wenholz & Vi, 2023. "Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    8. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Wen Zhou & Desmond Richmond-Buccola & Qiannan Wang & Philip J. Kranzusch, 2022. "Structural basis of human TREX1 DNA degradation and autoimmune disease," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Chen Sun & Kunal Kathuria & Sarah B. Emery & ByungJun Kim & Ian E. Burbulis & Joo Heon Shin & Daniel R. Weinberger & John V. Moran & Jeffrey M. Kidd & Ryan E. Mills & Michael J. McConnell, 2024. "Mapping recurrent mosaic copy number variation in human neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Tehreem Khalil & Samman & Zaynab Jawad & Zunaira Hakeem & Aemin Rasheed & Fareeha Sohail & Iqra Asad & Shehreen Sohail & Hamza Rana & Sana Saleem, 2022. "Human T-cell lymphotropic virus type 1 oncogenesis and cell-to-cell spread," European Journal of Biology, AJPO Journals Limited, vol. 7(1), pages 1-12.
    14. Seethalakshmi Hariharan & Benjamin T. Whitfield & Christopher J. Pirozzi & Matthew S. Waitkus & Michael C. Brown & Michelle L. Bowie & David M. Irvin & Kristen Roso & Rebecca Fuller & Janell Hostettle, 2024. "Interplay between ATRX and IDH1 mutations governs innate immune responses in diffuse gliomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Bert I. Crawford & Mary Jo Talley & Joshua Russman & James Riddle & Sabrina Torres & Troy Williams & Michelle S. Longworth, 2024. "Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Yidan Wang & Ying Xu & Chee Wah Tan & Longliang Qiao & Wan Ni Chia & Hongyi Zhang & Qin Huang & Zhenqiang Deng & Ziwei Wang & Xi Wang & Xurui Shen & Canyu Liu & Rongjuan Pei & Yuanxiao Liu & Shuai Xue, 2022. "Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Anant Gharpure & Ariana Sulpizio & Johannes R. Loeffler & Monica L. Fernández-Quintero & Andy S. Tran & Luke L. Lairson & Andrew B. Ward, 2025. "Distinct oligomeric assemblies of STING induced by non-nucleotide agonists," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    18. Hongwei Lv & Qianni Zong & Cian Chen & Guishuai Lv & Wei Xiang & Fuxue Xing & Guoqing Jiang & Bing Yan & Xiaoyan Sun & Yue Ma & Liang Wang & Zixin Wu & Xiuliang Cui & Hongyang Wang & Wen Yang, 2024. "TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    19. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Annemarie Steiner & Katja Hrovat-Schaale & Ignazia Prigione & Chien-Hsiung Yu & Pawat Laohamonthonkul & Cassandra R. Harapas & Ronnie Ren Jie Low & Dominic Nardo & Laura F. Dagley & Michael J. Mlodzia, 2022. "Deficiency in coatomer complex I causes aberrant activation of STING signalling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65713-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.