IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-65030-5.html
   My bibliography  Save this article

Controlling interfacial protein adsorption, desorption and aggregation in biomolecular condensates

Author

Listed:
  • Brent S. Visser

    (Radboud University, Institute for Molecules and Materials)

  • Merlijn H. I. van Haren

    (Radboud University, Institute for Molecules and Materials)

  • Wojciech P. Lipiński

    (Radboud University, Institute for Molecules and Materials
    Radboud University, Radboud Institute for Molecular Life Sciences)

  • Kirsten A. van Leijenhorst-Groener

    (University of Twente, Nanobiophysics, Faculty of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical Centre)

  • Mireille M.A.E. Claessens

    (University of Twente, Nanobiophysics, Faculty of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical Centre)

  • Marcos V. A. Queirós

    (Radboud University, Institute for Molecules and Materials
    Universidade Estadual de Campinas (UNICAMP), Instituto de Química)

  • Carlos H. I. Ramos

    (Universidade Estadual de Campinas (UNICAMP), Instituto de Química)

  • Jorine Eeftens

    (Radboud University, Radboud Institute for Molecular Life Sciences)

  • Evan Spruijt

    (Radboud University, Institute for Molecules and Materials)

Abstract

Aggregation of amyloidogenic proteins is linked to age-related diseases. The presence of interfaces can affect their aggregation mechanism, often speeding up aggregation. α-Synuclein (αSyn) can adsorb to biomolecular condensates, leading to heterogenous nucleation and faster aggregation. Understanding the mechanism underlying localization of amyloidogenic proteins at condensate interfaces is crucial for developing strategies to prevent or reverse their binding. We show that αSyn localization to the surface of peptide-based heterotypic condensates is an adsorption process governed by the protein’s condensate-amphiphilic nature, and the condensate surface charge. Adsorption occurs reversibly in multiple layers and plateaus at micromolar concentrations. Based on these findings, we rationally design three strategies to modulate αSyn accumulation: (i) addition of biomolecules that decrease the condensate ζ-potential, such as NTPs and RNA, (ii) competitive adsorption of proteins targeting the condensate interface, such as G3BP1, DDX4-YFP, EGFP-NPM1, Hsp70, Hsc70, and (iii) preferential adsorption of αSyn to membranes. Removing αSyn from the condensate interface slows aggregation, highlighting potential cellular control over protein adsorption and implications for therapeutic strategies.

Suggested Citation

  • Brent S. Visser & Merlijn H. I. van Haren & Wojciech P. Lipiński & Kirsten A. van Leijenhorst-Groener & Mireille M.A.E. Claessens & Marcos V. A. Queirós & Carlos H. I. Ramos & Jorine Eeftens & Evan Sp, 2025. "Controlling interfacial protein adsorption, desorption and aggregation in biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65030-5
    DOI: 10.1038/s41467-025-65030-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-65030-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-65030-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven J. Roeters & Kris Strunge & Kasper B. Pedersen & Thaddeus W. Golbek & Mikkel Bregnhøj & Yuge Zhang & Yin Wang & Mingdong Dong & Janni Nielsen & Daniel E. Otzen & Birgit Schiøtt & Tobias Weidner, 2023. "Elevated concentrations cause upright alpha-synuclein conformation at lipid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hermann Broder Schmidt & Ariana Barreau & Rajat Rohatgi, 2019. "Phase separation-deficient TDP43 remains functional in splicing," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Nicola Galvanetto & Miloš T. Ivanović & Aritra Chowdhury & Andrea Sottini & Mark F. Nüesch & Daniel Nettels & Robert B. Best & Benjamin Schuler, 2023. "Extreme dynamics in a biomolecular condensate," Nature, Nature, vol. 619(7971), pages 876-883, July.
    4. Archishman Ghosh & Divya Kota & Huan-Xiang Zhou, 2021. "Shear relaxation governs fusion dynamics of biomolecular condensates," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. D. Janka Bauer & Arash Nikoubashman, 2024. "The conformations of protein chains at the interface of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    6. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Simon Alberti & Paolo Arosio & Robert B. Best & Steven Boeynaems & Danfeng Cai & Rosana Collepardo-Guevara & Gregory L. Dignon & Rumiana Dimova & Shana Elbaum-Garfinkle & Nicolas L. Fawzi & Monika Fux, 2025. "Current practices in the study of biomolecular condensates: a community comment," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Emanuele Zippo & Dorothee Dormann & Thomas Speck & Lukas S. Stelzl, 2025. "Molecular simulations of enzymatic phosphorylation of disordered proteins and their condensates," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Giuseppe Sicoli & Daniel Sieme & Kerstin Overkamp & Mahdi Khalil & Robin Backer & Christian Griesinger & Dieter Willbold & Nasrollah Rezaei-Ghaleh, 2024. "Large dynamics of a phase separating arginine-glycine-rich domain revealed via nuclear and electron spins," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Miyuki Hayashi & Amandeep Girdhar & Ying-Hui Ko & Kevin M. Kim & Jacquelyn A. DePierro & Joseph R. Buchler & Nikhita Arunprakash & Aditya Bajaj & Gino Cingolani & Lin Guo, 2024. "Engineered NLS-chimera downregulates expression of aggregation-prone endogenous FUS," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Agustín Mangiarotti & Elias Sabri & Kita Valerie Schmidt & Christian Hoffmann & Dragomir Milovanovic & Reinhard Lipowsky & Rumiana Dimova, 2025. "Lipid packing and cholesterol content regulate membrane wetting and remodeling by biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    9. Rosa Antón & Miguel Á. Treviño & David Pantoja-Uceda & Sara Félix & María Babu & Eurico J. Cabrita & Markus Zweckstetter & Philip Tinnefeld & Andrés M. Vera & Javier Oroz, 2024. "Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Fleurie M. Kelley & Anas Ani & Emily G. Pinlac & Bridget Linders & Bruna Favetta & Mayur Barai & Yuchen Ma & Arjun Singh & Gregory L. Dignon & Yuwei Gu & Benjamin S. Schuster, 2025. "Controlled and orthogonal partitioning of large particles into biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Yannick H. A. Leurs & Willem Hout & Andrea Gardin & Joost L. J. Dongen & Andoni Rodriguez-Abetxuko & Nadia A. Erkamp & Jan C. M. Hest & Francesca Grisoni & Luc Brunsveld, 2025. "Automated navigation of condensate phase behavior with active machine learning," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    13. Gaurav Chauhan & Mina Farag & Samuel R. Cohen & Rohit V. Pappu, 2024. "Reply to: The conformations of protein chains at the interface of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    14. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Sunfengda Song & Haiyang Xie & Qingwen Wang & Xinyi Sun & Jiasu Xu & Rui Chen & Yuankang Zhu & Lai Jiang & Xianting Ding, 2025. "Spatiotemporal deciphering of dynamic the FUS interactome during liquid-liquid phase separation in living cells," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    16. Sheung Chun Ng & Abin Biswas & Trevor Huyton & Jürgen Schünemann & Simone Reber & Dirk Görlich, 2023. "Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Mark F. Nüesch & Lisa Pietrek & Erik D. Holmstrom & Daniel Nettels & Valentin Roten & Rafael Kronenberg-Tenga & Ohad Medalia & Gerhard Hummer & Benjamin Schuler, 2024. "Nanosecond chain dynamics of single-stranded nucleic acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Ashish Joshi & Anuja Walimbe & Anamika Avni & Sandeep K. Rai & Lisha Arora & Snehasis Sarkar & Samrat Mukhopadhyay, 2023. "Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Basusree Ghosh & Patrick M. McCall & Kristian Kyle Vay & Archishman Ghosh & Lars Hubatsch & David T. Gonzales & Jan Brugués & Hannes Mutschler & T-Y. Dora Tang, 2025. "RNA-peptide interactions tune the ribozyme activity within coacervate microdroplet dispersions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65030-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.