IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64800-5.html
   My bibliography  Save this article

Lysosomal and mTORC1 signaling dysregulation underpin the pathology of spastic paraplegia type 80

Author

Listed:
  • Yiqiang Zhi

    (Fujian Medical University
    Fujian Medical University)

  • Tongtong Zhang

    (Fujian Medical University
    Fujian Medical University)

  • Danping Lu

    (Fujian Agriculture and Forestry University)

  • Shuhuai Lin

    (Fujian Medical University
    Fujian Medical University)

  • Huizhen Su

    (Fujian Medical University
    Fujian Medical University)

  • Yupei Wu

    (Fujian Medical University
    Fujian Medical University)

  • Qiyuan Chang

    (Fujian Medical University)

  • Shuyuan Wang

    (Fujian Medical University)

  • Chenning Lv

    (Fujian Medical University
    Fujian Medical University)

  • Honggao Fu

    (Fujian Medical University
    Fujian Medical University)

  • Li-Yu Chen

    (Fujian Agriculture and Forestry University)

  • Wan-Jin Chen

    (Fujian Medical University
    Fujian Medical University)

  • Ning Wang

    (Fujian Medical University
    Fujian Medical University)

  • Zhifei Fu

    (Fujian Medical University
    Fujian Medical University)

  • Xiang Lin

    (Fujian Medical University
    Fujian Medical University)

  • Dan Xu

    (Fujian Medical University)

Abstract

Endosomal sorting complex required for transport (ESCRT) is the major membrane remodeling complex, closely associated with endolysosomal repair and hereditary spastic paraplegias (HSP) diseases. Loss of function mutations in the ESCRT-I component UBAP1 causes a rare type of HSP (spastic paraplegia 80, SPG80), while the underlying pathological mechanism is unclear. Here, we found that UBAP1 but not SPG80 causing mutant was efficiently recruited to damaged lysosomes and mediated lysosome recovery. Loss of UBAP1 results in dysfunction of lysosomes, disconnecting mTOR localization on lysosomes, leading to cytoplasmic mTORC1 activation and TFEB dephosphorylation, as confirmed in vitro and in vivo models. Administration of rapamycin, a specific inhibitor of mTORC1, enhances mTOR lysosomal localization and TFEB phosphorylation. This pharmacological intervention effectively attenuated disease progression and restored lysosomal homeostasis in Ubap1 deficiency mice. Our findings reveal UBAP1’s role in lysosome regulation and suggest rapamycin may benefit patients with HSP and other motor neuron disorders.

Suggested Citation

  • Yiqiang Zhi & Tongtong Zhang & Danping Lu & Shuhuai Lin & Huizhen Su & Yupei Wu & Qiyuan Chang & Shuyuan Wang & Chenning Lv & Honggao Fu & Li-Yu Chen & Wan-Jin Chen & Ning Wang & Zhifei Fu & Xiang Lin, 2025. "Lysosomal and mTORC1 signaling dysregulation underpin the pathology of spastic paraplegia type 80," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64800-5
    DOI: 10.1038/s41467-025-64800-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64800-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64800-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicola Alesi & Elie W. Akl & Damir Khabibullin & Heng-Jia Liu & Anna S. Nidhiry & Emma R. Garner & Harilaos Filippakis & Hilaire C. Lam & Wei Shi & Srinivas R. Viswanathan & Manrico Morroni & Shawn M., 2021. "TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Claudio Bussi & Agustín Mangiarotti & Christian Vanhille-Campos & Beren Aylan & Enrica Pellegrino & Natalia Athanasiadi & Antony Fearns & Angela Rodgers & Titus M. Franzmann & Anđela Šarić & Rumiana D, 2023. "Stress granules plug and stabilize damaged endolysosomal membranes," Nature, Nature, vol. 623(7989), pages 1062-1069, November.
    3. Nicola Alesi & Damir Khabibullin & Dean M. Rosenthal & Elie W. Akl & Pieter M. Cory & Michel Alchoueiry & Samer Salem & Melissa Daou & William F. Gibbons & Jennifer A. Chen & Long Zhang & Harilaos Fil, 2024. "TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Claudio Bussi & Agustín Mangiarotti & Christian Vanhille-Campos & Beren Aylan & Enrica Pellegrino & Natalia Athanasiadi & Antony Fearns & Angela Rodgers & Titus M. Franzmann & Anđela Šarić & Rumiana D, 2023. "Publisher Correction: Stress granules plug and stabilize damaged endolysosomal membranes," Nature, Nature, vol. 624(7990), pages 3-3, December.
    5. Luana L. Scheffer & Sen Chandra Sreetama & Nimisha Sharma & Sushma Medikayala & Kristy J. Brown & Aurelia Defour & Jyoti K. Jaiswal, 2014. "Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    6. Yoshinori Takahashi & Haiyan He & Zhenyuan Tang & Tatsuya Hattori & Ying Liu & Megan M. Young & Jacob M. Serfass & Longgui Chen & Melat Gebru & Chong Chen & Carson A. Wills & Jennifer M. Atkinson & Ha, 2018. "An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agustín Mangiarotti & Elias Sabri & Kita Valerie Schmidt & Christian Hoffmann & Dragomir Milovanovic & Reinhard Lipowsky & Rumiana Dimova, 2025. "Lipid packing and cholesterol content regulate membrane wetting and remodeling by biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    2. Simon Alberti & Paolo Arosio & Robert B. Best & Steven Boeynaems & Danfeng Cai & Rosana Collepardo-Guevara & Gregory L. Dignon & Rumiana Dimova & Shana Elbaum-Garfinkle & Nicolas L. Fawzi & Monika Fux, 2025. "Current practices in the study of biomolecular condensates: a community comment," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Yonglun Zeng & Baiying Li & Shuxian Huang & Hongbo Li & Wenhan Cao & Yixuan Chen & Guoyong Liu & Zhenping Li & Chao Yang & Lei Feng & Jiayang Gao & Sze Wan Lo & Jierui Zhao & Jinbo Shen & Yan Guo & Ca, 2023. "The plant unique ESCRT component FREE1 regulates autophagosome closure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Niccolò Mosesso & Niharika Savant Lerner & Tobias Bläske & Felix Groh & Shane Maguire & Marie Laura Niedermeier & Eliane Landwehr & Karin Vogel & Konstanze Meergans & Marie-Kristin Nagel & Malte Dresc, 2024. "Arabidopsis CaLB1 undergoes phase separation with the ESCRT protein ALIX and modulates autophagosome maturation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Yan Tang & David J. Kwiatkowski & Elizabeth P. Henske, 2022. "Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Elodie Mailler & Carlos M. Guardia & Xiaofei Bai & Michal Jarnik & Chad D. Williamson & Yan Li & Nunziata Maio & Andy Golden & Juan S. Bonifacino, 2021. "The autophagy protein ATG9A enables lipid mobilization from lipid droplets," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    8. Takashi Nozawa & Hirotaka Toh & Junpei Iibushi & Kohei Kogai & Atsuko Minowa-Nozawa & Junko Satoh & Shinji Ito & Kazunori Murase & Ichiro Nakagawa, 2023. "Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Ana Belén Plata-Gómez & Lucía Prado-Rivas & Alba Sanz & Nerea Deleyto-Seldas & Fernando García & Celia Calle Arregui & Camila Silva & Eduardo Caleiras & Osvaldo Graña-Castro & Elena Piñeiro-Yáñez & Jo, 2024. "Hepatic nutrient and hormone signaling to mTORC1 instructs the postnatal metabolic zonation of the liver," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Kaushal Asrani & Juhyung Woo & Adrianna A. Mendes & Ethan Schaffer & Thiago Vidotto & Clarence Rachel Villanueva & Kewen Feng & Lia Oliveira & Sanjana Murali & Hans B. Liu & Daniela C. Salles & Brando, 2022. "An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Patrick Niekamp & Felix Scharte & Tolulope Sokoya & Laura Vittadello & Yeongho Kim & Yongqiang Deng & Elisabeth Südhoff & Angelika Hilderink & Mirco Imlau & Christopher J. Clarke & Michael Hensel & Ch, 2022. "Ca2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Agata N. Makar & Alina Boraman & Peter Mosen & Joanne E. Simpson & Jair Marques & Tim Michelberger & Stuart Aitken & Ann P. Wheeler & Dominic Winter & Alex Kriegsheim & Noor Gammoh, 2024. "The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Susanne G. Grein & Kyra A. Y. Defourny & Huib H. Rabouw & Soenita S. Goerdayal & Martijn J. C. Herwijnen & Richard W. Wubbolts & Maarten Altelaar & Frank J. M. Kuppeveld & Esther N. M. Nolte-‘t Hoen, 2022. "The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. B. Vijayalakshmi Ayyar & Khalil Ettayebi & Wilhelm Salmen & Umesh C. Karandikar & Frederick H. Neill & Victoria R. Tenge & Sue E. Crawford & Erhard Bieberich & B. V. Venkataram Prasad & Robert L. Atma, 2023. "CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Irene Sambri & Marco Ferniani & Andrea Ballabio, 2024. "Ragopathies and the rising influence of RagGTPases on human diseases," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64800-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.