IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64461-4.html
   My bibliography  Save this article

Unsteady flows uncover the limits of the stress-optic law

Author

Listed:
  • Daisuke Noto

    (University of Pennsylvania)

  • Kohei Ohie

    (Nagoya University)

  • Yuji Tasaka

    (Hokkaido University)

Abstract

Birefringence induced in complex fluid flows, containing anisotropic microstructures, exhibits vibrant patterns, captivating people perceptually. More practically, it has garnered multidisciplinary expectations on the noninvasive characterization of stress fields in flowing materials based on the stress-optic law established for solid materials, prospecting its in situ and in vitro applications. Here, we question such a paradigm by demonstrating the failure of the law in unsteady flows through laboratory experiments. The latter originates from the relaxation of the microscopic structures, characterized by the Deborah number De, which is a dimensionless number that compares the material’s relaxation time and the characteristic time of the applied deformation process. Flow birefringence turns out to represent accumulated fluid deformation only when fluids behave like solids with large De, whereas the anisotropy of the microstructures relaxes for small De, diminishing birefringence. We generalize the formulation of flow birefringence evolution by explicitly decomposing the microscopic and macroscopic contributions to it, providing a unified understanding of flow birefringence based on deep physical interpretations attained through laboratory experiments. Our findings may encourage undertaking a drastic course correction in the future development of flow birefringence as a practical tool for stress quantification based on present-day knowledge, and enlighten its potential usage.

Suggested Citation

  • Daisuke Noto & Kohei Ohie & Yuji Tasaka, 2025. "Unsteady flows uncover the limits of the stress-optic law," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64461-4
    DOI: 10.1038/s41467-025-64461-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64461-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64461-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Mennel & Marco M. Furchi & Stefan Wachter & Matthias Paur & Dmitry K. Polyushkin & Thomas Mueller, 2018. "Optical imaging of strain in two-dimensional crystals," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haotian Jiang & Tairan Xi & Jiangxu Li & Yangchen He & Hongrui Ma & Yulu Mao & Takashi Taniguchi & Kenji Watanabe & Daniel A. Rhodes & Yang Zhang & Jun Xiao & Ying Wang, 2025. "Probing interplay of topological properties and electron correlation in TaIrTe4 via nonlinear Hall effect," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Shuaiqin Wu & Jie Deng & Xudong Wang & Jing Zhou & Hanxue Jiao & Qianru Zhao & Tie Lin & Hong Shen & Xiangjian Meng & Yan Chen & Junhao Chu & Jianlu Wang, 2024. "Polarization photodetectors with configurable polarity transition enabled by programmable ferroelectric-doping patterns," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shivangi Shree & Delphine Lagarde & Laurent Lombez & Cedric Robert & Andrea Balocchi & Kenji Watanabe & Takashi Taniguchi & Xavier Marie & Iann C. Gerber & Mikhail M. Glazov & Leonid E. Golub & Bernha, 2021. "Interlayer exciton mediated second harmonic generation in bilayer MoS2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64461-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.