IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63726-2.html
   My bibliography  Save this article

Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo

Author

Listed:
  • Elizabeth Voke

    (Berkeley)

  • Mariah L. Arral

    (Carnegie Mellon University)

  • Henry J. Squire

    (Berkeley)

  • Teng-Jui Lin

    (Berkeley)

  • Lining Zheng

    (Berkeley)

  • Roxana Coreas

    (Berkeley)

  • Alison Lui

    (Berkeley)

  • Anthony T. Iavarone

    (Berkeley)

  • Rebecca L. Pinals

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Stanford University
    Stanford University)

  • Kathryn A. Whitehead

    (Carnegie Mellon University
    Carnegie Mellon University)

  • Markita P. Landry

    (Berkeley
    Berkeley
    University of California)

Abstract

Lipid nanoparticles (LNPs) are the most clinically advanced nonviral RNA-delivery vehicles, though challenges remain in fully understanding how LNPs interact with biological systems. In vivo, proteins form an associated corona on LNPs that redefines their physicochemical properties and influences delivery outcomes. Despite its importance, the LNP protein corona is challenging to study owing to the technical difficulty of selectively recovering soft nanoparticles from biological samples. Herein, we develop a quantitative, label-free mass spectrometry-based proteomics approach to characterize the protein corona on LNPs. Critically, this protein corona isolation workflow avoids artifacts introduced by the presence of endogenous nanoparticles in human biofluids. We apply continuous density gradient ultracentrifugation for protein-LNP complex isolation, with mass spectrometry for protein identification normalized to protein composition in the biofluid alone. With this approach, we quantify proteins consistently enriched in the LNP corona including vitronectin, C-reactive protein, and alpha-2-macroglobulin. We explore the impact of these corona proteins on cell uptake and mRNA expression in HepG2 human liver cells, and find that, surprisingly, increased levels of cell uptake do not correlate with increased mRNA expression in part due to protein corona-induced lysosomal trafficking of LNPs. Our results underscore the need to consider the protein corona in the design of LNP-based therapeutics.

Suggested Citation

  • Elizabeth Voke & Mariah L. Arral & Henry J. Squire & Teng-Jui Lin & Lining Zheng & Roxana Coreas & Alison Lui & Anthony T. Iavarone & Rebecca L. Pinals & Kathryn A. Whitehead & Markita P. Landry, 2025. "Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63726-2
    DOI: 10.1038/s41467-025-63726-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63726-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63726-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelsey L. Swingle & Alex G. Hamilton & Hannah C. Safford & Hannah C. Geisler & Ajay S. Thatte & Rohan Palanki & Amanda M. Murray & Emily L. Han & Alvin J. Mukalel & Xuexiang Han & Ryann A. Joseph & Ad, 2025. "Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia," Nature, Nature, vol. 637(8045), pages 412-421, January.
    2. Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Kelsey L. Swingle & Alex G. Hamilton & Hannah C. Safford & Hannah C. Geisler & Ajay S. Thatte & Rohan Palanki & Amanda M. Murray & Emily L. Han & Alvin J. Mukalel & Xuexiang Han & Ryann A. Joseph & Ad, 2025. "Publisher Correction: Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia," Nature, Nature, vol. 638(8051), pages 33-33, February.
    4. Hassan Gharibi & Ali Akbar Ashkarran & Maryam Jafari & Elizabeth Voke & Markita P. Landry & Amir Ata Saei & Morteza Mahmoudi, 2024. "A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Ali Akbar Ashkarran & Hassan Gharibi & Elizabeth Voke & Markita P. Landry & Amir Ata Saei & Morteza Mahmoudi, 2022. "Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Jens B. Simonsen, 2024. "Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    7. Kathryn A. Whitehead & J. Robert Dorkin & Arturo J. Vegas & Philip H. Chang & Omid Veiseh & Jonathan Matthews & Owen S. Fenton & Yunlong Zhang & Karsten T. Olejnik & Volkan Yesilyurt & Delai Chen & Sc, 2014. "Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    8. Kai Liu & Elisa Lázaro-Ibáñez & Michael Lerche & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2024. "Reply to: Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Akbar Ashkarran & Hassan Gharibi & Seyed Amirhossein Sadeghi & Seyed Majed Modaresi & Qianyi Wang & Teng-Jui Lin & Ghafar Yerima & Ali Tamadon & Maryam Sayadi & Maryam Jafari & Zijin Lin & Danilo , 2024. "Small molecule modulation of protein corona for deep plasma proteome profiling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Jens B. Simonsen, 2024. "Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    3. Yue Xu & Shihao Ma & Haotian Cui & Jingan Chen & Shufen Xu & Fanglin Gong & Alex Golubovic & Muye Zhou & Kevin Chang Wang & Andrew Varley & Rick Xing Ze Lu & Bo Wang & Bowen Li, 2024. "AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Jacob R. Shaw & Nicholas Caprio & Nhu Truong & Mehari Weldemariam & Anh Tran & Nageswara Pilli & Swarnima Pandey & Jace W. Jones & Maureen A. Kane & Ryan M. Pearson, 2025. "Inflammatory disease progression shapes nanoparticle biomolecular corona-mediated immune activation profiles," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    5. Wei Wang & Kepan Chen & Ting Jiang & Yiyang Wu & Zheng Wu & Hang Ying & Hang Yu & Jing Lu & Jinzhong Lin & Defang Ouyang, 2024. "Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Junguang Wu & Xuan Bai & Liang Yan & Didar Baimanov & Yalin Cong & Peiyu Quan & Rui Cai & Yong Guan & Wei Bu & Binhua Lin & Jing Wang & Shengtao Yu & Shijiao Li & Yu Chong & Yang Li & Guoqing Hu & Yul, 2024. "Selective regulation of macrophage lipid metabolism via nanomaterials’ surface chemistry," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ziyu Zhou & Yu Feng & Mingzhou Jiang & Zijun Yao & Jing Wang & Feng Pan & Rulan Feng & Chong Zhao & Yinyu Ma & Jinge Zhou & Lei Sun & Xiaotian Sun & Changyou Zhan & Xiao He & Kuan Jiang & Jiahui Yu & , 2025. "Ionizable polymeric micelles (IPMs) for efficient siRNA delivery," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    10. Mei Cao & Guo-Hua Yuan & Shi-Meng Cao & Yu-Xin Liu & Chu-Xiao Liu & Yi-Feng Xu & Jia Wei & Yi-Lin Guo & Ling-Ling Chen & Li Yang, 2025. "Direct circMAN1A2(2,3,4,5)-CENPB mRNA interaction regulates cell proliferation and cancer progression," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    11. Hassan Gharibi & Ali Akbar Ashkarran & Maryam Jafari & Elizabeth Voke & Markita P. Landry & Amir Ata Saei & Morteza Mahmoudi, 2024. "A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Mengjie Zhang & Abid Hussain & Bo Hu & Haiyin Yang & Chunhui Li & Shuai Guo & Xiaofeng Han & Bei Li & Yunlu Dai & Yuhong Cao & Hang Chi & Yuhua Weng & Cheng-Feng Qin & Yuanyu Huang, 2024. "Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Xuexiang Han & Ningqiang Gong & Lulu Xue & Margaret M. Billingsley & Rakan El-Mayta & Sarah J. Shepherd & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2023. "Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Marshall S. Padilla & Kaitlin Mrksich & Yiming Wang & Rebecca M. Haley & Jacqueline J. Li & Emily L. Han & Rakan El-Mayta & Emily H. Kim & Sofia Dias & Ningqiang Gong & Sridatta V. Teerdhala & Xuexian, 2025. "Branched endosomal disruptor (BEND) lipids mediate delivery of mRNA and CRISPR-Cas9 ribonucleoprotein complex for hepatic gene editing and T cell engineering," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    15. Xinming Liu & Hanan Abmanhal-Masarweh & Olivia Iwanowytsch & Emmanuel Okwelogu & Kiana Arashvand & Konstantina Karabatsou & Pietro Ivo D’Urso & Federico Roncaroli & Kostas Kostarelos & Thomas Kisby & , 2025. "Plasma-to-tumour tissue integrated proteomics using nano-omics for biomarker discovery in glioblastoma," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Roy Pattipeiluhu & Ye Zeng & Marco M.R.M. Hendrix & Ilja K. Voets & Alexander Kros & Thomas H. Sharp, 2024. "Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Kexin Su & Lu Shi & Tao Sheng & Xinxin Yan & Lixin Lin & Chaoyang Meng & Shiqi Wu & Yuxuan Chen & Yao Zhang & Chaorong Wang & Zichuan Wang & Junjie Qiu & Jiahui Zhao & Tengfei Xu & Yuan Ping & Zhen Gu, 2024. "Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63726-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.