IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39768-9.html
   My bibliography  Save this article

Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function

Author

Listed:
  • Kai Liu

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Ralf Nilsson

    (BioPharmaceuticals R&D, AstraZeneca)

  • Elisa Lázaro-Ibáñez

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Hanna Duàn

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Tasso Miliotis

    (BioPharmaceuticals R&D, AstraZeneca)

  • Marie Strimfors

    (BioPharmaceuticals R&D, AstraZeneca)

  • Michael Lerche

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Ana Rita Salgado Ribeiro

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Johan Ulander

    (Pharmaceutical Sciences, R&D, AstraZeneca)

  • Daniel Lindén

    (BioPharmaceuticals R&D, AstraZeneca
    University of Gothenburg)

  • Anna Salvati

    (University of Groningen)

  • Alan Sabirsh

    (Pharmaceutical Sciences, R&D, AstraZeneca)

Abstract

In terms of lipid nanoparticle (LNP) engineering, the relationship between particle composition, delivery efficacy, and the composition of the biocoronas that form around LNPs, is poorly understood. To explore this we analyze naturally efficacious biocorona compositions using an unbiased screening workflow. First, LNPs are complexed with plasma samples, from individual lean or obese male rats, and then functionally evaluated in vitro. Then, a fast, automated, and miniaturized method retrieves the LNPs with intact biocoronas, and multiomics analysis of the LNP-corona complexes reveals the particle corona content arising from each individual plasma sample. We find that the most efficacious LNP-corona complexes were enriched with high-density lipoprotein (HDL) and, compared to the commonly used corona-biomarker Apolipoprotein E, corona HDL content was a superior predictor of in-vivo activity. Using technically challenging and clinically relevant lipid nanoparticles, these methods reveal a previously unreported role for HDL as a source of ApoE and, form a framework for improving LNP therapeutic efficacy by controlling corona composition.

Suggested Citation

  • Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39768-9
    DOI: 10.1038/s41467-023-39768-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39768-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39768-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Bertrand & Philippe Grenier & Morteza Mahmoudi & Eliana M. Lima & Eric A. Appel & Flavio Dormont & Jong-Min Lim & Rohit Karnik & Robert Langer & Omid C. Farokhzad, 2017. "Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    2. Lei Miao & Jiaqi Lin & Yuxuan Huang & Linxian Li & Derfogail Delcassian & Yifan Ge & Yunhua Shi & Daniel G. Anderson, 2020. "Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Siddharth Patel & N. Ashwanikumar & Ema Robinson & Yan Xia & Cosmin Mihai & Joseph P. Griffith & Shangguo Hou & Adam A. Esposito & Tatiana Ketova & Kevin Welsher & John L. Joyal & Örn Almarsson & Gaur, 2020. "Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Siddharth Patel & N. Ashwanikumar & Ema Robinson & Yan Xia & Cosmin Mihai & Joseph P. Griffith & Shangguo Hou & Adam A. Esposito & Tatiana Ketova & Kevin Welsher & John L. Joyal & Örn Almarsson & Gaur, 2020. "Author Correction: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Pattipeiluhu & Ye Zeng & Marco M.R.M. Hendrix & Ilja K. Voets & Alexander Kros & Thomas H. Sharp, 2024. "Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Yunqiu Miao & Lijun Li & Ying Wang & Jiangyue Wang & Yihan Zhou & Linmiao Guo & Yanqi Zhao & Di Nie & Yang Zhang & Xinxin Zhang & Yong Gan, 2024. "Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Mingyang Li & Xinyang Jin & Tao Liu & Feng Fan & Feng Gao & Shuang Chai & Lihua Yang, 2022. "Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39768-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.