Author
Listed:
- Xingdi Cheng
(Chinese Academy of Sciences
Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Xia Zheng
(University of Chinese Academy of Sciences
Chinese Academy of Sciences)
- Kun Tao
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Haonan Huo
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Zhang Liu
(Chinese Academy of Sciences)
- Xueguang Lu
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Jianjun Wang
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
Abstract
Lipid nanoparticles (LNPs) are key non-viral carriers for mRNA vaccines and therapeutics, but the inherent instability of mRNA necessitates sub-zero storage with cryoprotectants (CPAs) to prevent freeze-induced LNP aggregation and compromised mRNA delivery. Here we show that ice formation during freezing concentrates CPAs with LNPs in the remaining liquid—a phenomenon known as freeze concentration. This creates a steep concentration gradient of CPAs across the lipid membrane that drives passive CPAs diffusion into LNPs. By leveraging this process, we developed betaine-based CPAs that both preserve the stability of LNP and enter LNP during freeze-thaw. The incorporated betaine enhances endosomal escape and boosts mRNA delivery of LNP. In female mice, betaine-loaded LNPs elicit stronger humoral and cellular immune responses, providing dose-sparing advantages. These findings highlight freeze concentration as a promising LNP formulation strategy and underscore the role of CPA as active modulators of LNP structure and function.
Suggested Citation
Xingdi Cheng & Xia Zheng & Kun Tao & Haonan Huo & Zhang Liu & Xueguang Lu & Jianjun Wang, 2025.
"Freezing induced incorporation of betaine in lipid nanoparticles enhances mRNA delivery,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60040-9
DOI: 10.1038/s41467-025-60040-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60040-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.