IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63626-5.html
   My bibliography  Save this article

mcRigor: a statistical method to enhance the rigor of metacell partitioning in single-cell data analysis

Author

Listed:
  • Pan Liu

    (University of California)

  • Jingyi Jessica Li

    (University of California
    Fred Hutchinson Cancer Center
    University of Washington)

Abstract

In single-cell data analysis, addressing sparsity often involves aggregating the profiles of homogeneous single cells into metacells. However, existing metacell partitioning methods lack checks on the homogeneity assumption and may aggregate heterogeneous single cells, potentially biasing downstream analysis and leading to spurious discoveries. To fill this gap, we introduce mcRigor, a statistical method to detect dubious metacells, which are composed of heterogeneous single cells, and optimize the hyperparameter(s) of a metacell partitioning method. The core of mcRigor is a feature-correlation-based statistic that measures the heterogeneity of a metacell, with its null distribution derived from a double permutation scheme. As an optimizer for existing metacell partitioning methods, mcRigor has been shown to improve the reliability of discoveries in single-cell RNA-seq and multiome (RNA + ATAC) data analyses, such as uncovering differential gene co-expression modules, enhancer-gene associations, and gene temporal expression. Moreover, mcRigor enables benchmarking and selection of the most suitable metacell partitioning method with optimized hyperparameter(s) tailored to a specific dataset, ensuring reliable downstream analysis. Our results indicate that among existing metacell partitioning methods, MetaCell and SEACells consistently outperform MetaCell2 and SuperCell, albeit with the trade-off of longer runtimes.

Suggested Citation

  • Pan Liu & Jingyi Jessica Li, 2025. "mcRigor: a statistical method to enhance the rigor of metacell partitioning in single-cell data analysis," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63626-5
    DOI: 10.1038/s41467-025-63626-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63626-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63626-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63626-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.