IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v129y2017icp141-146.html
   My bibliography  Save this article

A note on the unbiased estimator of Σ2

Author

Listed:
  • Zhou, Bu
  • Guo, Jia

Abstract

This paper gives simple and intuitive derivations of three equivalent forms of a distribution-free and unbiased estimator of the squared covariance matrix Σ2. Particularly, computationally efficient forms of the unbiased estimators of Σ2 and its trace are derived from the computationally intensive U-statistic forms.

Suggested Citation

  • Zhou, Bu & Guo, Jia, 2017. "A note on the unbiased estimator of Σ2," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 141-146.
  • Handle: RePEc:eee:stapro:v:129:y:2017:i:c:p:141-146
    DOI: 10.1016/j.spl.2017.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521730189X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.
    2. Srivastava, Muni S. & Yanagihara, Hirokazu, 2010. "Testing the equality of several covariance matrices with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1319-1329, July.
    3. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    4. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    5. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    6. Yamada, Takayuki & Himeno, Tetsuto, 2015. "Testing homogeneity of mean vectors under heteroscedasticity in high-dimension," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 7-27.
    7. Shota Katayama & Yutaka Kano, 2014. "A New Test on High-Dimensional Mean Vector Without Any Assumption on Population Covariance Matrix," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(24), pages 5290-5304, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    3. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Lixiu Wu & Jiang Hu, 2024. "Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 579-615, August.
    6. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    7. Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
    8. M. Rauf Ahmad, 2019. "A unified approach to testing mean vectors with large dimensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 593-618, December.
    9. Hyodo, Masashi & Watanabe, Hiroki & Seo, Takashi, 2018. "On simultaneous confidence interval estimation for the difference of paired mean vectors in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 160-173.
    10. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    11. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    12. M. Ahmad, 2014. "A $$U$$ -statistic approach for a high-dimensional two-sample mean testing problem under non-normality and Behrens–Fisher setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 33-61, February.
    13. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    15. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    16. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    18. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    19. Qiu, Tao & Xu, Wangli & Zhu, Liping, 2021. "Two-sample test in high dimensions through random selection," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    20. Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:129:y:2017:i:c:p:141-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.