IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63571-3.html
   My bibliography  Save this article

Transient domain boundary drives ultrafast magnetisation reversal

Author

Listed:
  • Martin Hennecke

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Daniel Schick

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Themistoklis P. H. Sidiropoulos

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Jun-Xiao Lin

    (Institut Jean Lamour)

  • Zongxia Guo

    (Institut Jean Lamour)

  • Grégory Malinowski

    (Institut Jean Lamour)

  • Maximilian Mattern

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Lutz Ehrentraut

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Martin Schmidbauer

    (Leibniz-Institut für Kristallzüchtung)

  • Matthias Schnuerer

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Clemens Korff Schmising

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie)

  • Stéphane Mangin

    (Institut Jean Lamour)

  • Michel Hehn

    (Institut Jean Lamour)

  • Stefan Eisebitt

    (Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
    Institut für Optik und Atomare Physik)

Abstract

Light-induced magnetisation switching is one of the most intriguing and promising areas where an ultrafast phenomenon can be utilised in technological applications. So far, experiment and theory have considered the origin of all-optical helicity-independent magnetisation switching (AO-HIS) in individual magnetic films only as a microscopically local, thermally-driven process of angular momentum transfer between different subsystems. Here, we demonstrate that this local picture is insufficient and that AO-HIS must also be regarded as a spatially inhomogeneous process along the depth within a few-nanometre thin magnetic layer. Two regions of opposite magnetisation directions are observed, separated by a highly mobile boundary, which propagates along the depth of a 9.4 nm thin Gd25Co75 alloy. The dynamics of this transient boundary determines the final magnetisation state as well as the speed of AO-HIS throughout the entire magnetic layer. The ability to understand the influence of nanoscale and transient inhomogeneities on ultrafast switching phenomena and more generally on phase transitions will open new routes for material design and excitation scenarios in future devices for transferring and storing information.

Suggested Citation

  • Martin Hennecke & Daniel Schick & Themistoklis P. H. Sidiropoulos & Jun-Xiao Lin & Zongxia Guo & Grégory Malinowski & Maximilian Mattern & Lutz Ehrentraut & Martin Schmidbauer & Matthias Schnuerer & C, 2025. "Transient domain boundary drives ultrafast magnetisation reversal," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63571-3
    DOI: 10.1038/s41467-025-63571-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63571-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63571-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Li & R. Medapalli & J. H. Mentink & R. V. Mikhaylovskiy & T. G. H. Blank & S. K. K. Patel & A. K. Zvezdin & Th. Rasing & E. E. Fullerton & A. V. Kimel, 2022. "Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. I. Radu & K. Vahaplar & C. Stamm & T. Kachel & N. Pontius & H. A. Dürr & T. A. Ostler & J. Barker & R. F. L. Evans & R. W. Chantrell & A. Tsukamoto & A. Itoh & A. Kirilyuk & Th. Rasing & A. V. Kimel, 2011. "Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins," Nature, Nature, vol. 472(7342), pages 205-208, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Camron Farhang & William R. Meier & Weihang Lu & Jiangxu Li & Yudong Wu & Shirin Mozaffari & Richa P. Madhogaria & Yang Zhang & David Mandrus & Jing Xia, 2025. "Discovery of an intermediate nematic state in a bilayer kagome metal ScV6Sn6," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Dominik Hamara & Mara Strungaru & Jamie R. Massey & Quentin Remy & Xin Chen & Guillermo Nava Antonio & Obed Alves Santos & Michel Hehn & Richard F. L. Evans & Roy W. Chantrell & Stéphane Mangin & Cate, 2024. "Ultra-high spin emission from antiferromagnetic FeRh," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Sahdane, T. & Masrour, R. & Jabar, A., 2021. "Ferrielectric properties of a bilayer structure with RKKY-like interaction: A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    5. Deeksha Gupta & Maryna Pankratova & Matthias Riepp & Manuel Pereiro & Biplab Sanyal & Soheil Ershadrad & Michel Hehn & Niko Pontius & Christian Schüßler-Langeheine & Radu Abrudan & Nicolas Bergeard & , 2025. "Tuning ultrafast demagnetization with ultrashort spin polarized currents in multi-sublattice ferrimagnets," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Lin Huang & Liyang Liao & Hongsong Qiu & Xianzhe Chen & Hua Bai & Lei Han & Yongjian Zhou & Yichen Su & Zhiyuan Zhou & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Antiferromagnetic magnonic charge current generation via ultrafast optical excitation," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    7. Y. Peng & D. Salomoni & G. Malinowski & W. Zhang & J. Hohlfeld & L. D. Buda-Prejbeanu & J. Gorchon & M. Vergès & J. X. Lin & D. Lacour & R. C. Sousa & I. L. Prejbeanu & S. Mangin & M. Hehn, 2023. "In-plane reorientation induced single laser pulse magnetization reversal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Lin Huang & Yanzhang Cao & Hongsong Qiu & Hua Bai & Liyang Liao & Chong Chen & Lei Han & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Terahertz oscillation driven by optical spin-orbit torque," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Kyuhwe Kang & Hiroki Omura & Daniel Yesudas & OukJae Lee & Kyung-Jin Lee & Hyun-Woo Lee & Tomoyasu Taniyama & Gyung-Min Choi, 2023. "Spin current driven by ultrafast magnetization of FeRh," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Laura Foglia & Björn Wehinger & Giovanni Perosa & Riccardo Mincigrucci & Enrico Allaria & Francesco Armillotta & Alexander Brynes & Matthew Copus & Riccardo Cucini & Dario Angelis & Giovanni Ninno & W, 2024. "Nanoscale polarization transient gratings," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63571-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.