IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63350-0.html
   My bibliography  Save this article

Auto-oscillations and directional magnon emission induced by spin current injection into large magnetic volumes

Author

Listed:
  • Richard Schlitz

    (ETH Zurich
    University of Konstanz)

  • Vladislav E. Demidov

    (University of Muenster)

  • Michaela Lammel

    (University of Konstanz)

  • Sergej O. Demokritov

    (University of Muenster)

  • Pietro Gambardella

    (ETH Zurich)

Abstract

The ability to manipulate magnons using electronic currents holds transformative potential for high-frequency signal processing architectures based on insulating magnetic materials. A critical challenge, however, lies in achieving efficient magnon emission and amplification through damping compensation, which typically requires ultra-thin films. In this study, we break this limitation by demonstrating a three-order-of-magnitude increase in magnon population, consistent with the onset of auto-oscillations upon reaching damping compensation, by injecting a spin current from a μm-wide Pt wire into a continuous 150 nm-thick yttrium iron garnet film. Using nonlocal magnon transport and Brillouin light scattering, we reveal that damping compensation occurs due to magnon self-localization beneath the Pt injector, which precludes radiation from the excited region. As a result, the nonlocal magnon conductance becomes mode-dependent and is significantly amplified by multi-magnon scattering at high magnon populations. Finally, we demonstrate that interfacial spin injection breaks yttrium iron garnet’s inversion symmetry, leading to unidirectional magnon emission. Our results pave the way for the development of advanced magnonic devices, including directional magnon emitters, and offer a new approach to achieving damping compensation in thick magnetic films.

Suggested Citation

  • Richard Schlitz & Vladislav E. Demidov & Michaela Lammel & Sergej O. Demokritov & Pietro Gambardella, 2025. "Auto-oscillations and directional magnon emission induced by spin current injection into large magnetic volumes," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63350-0
    DOI: 10.1038/s41467-025-63350-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63350-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63350-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. O. Demokritov & V. E. Demidov & O. Dzyapko & G. A. Melkov & A. A. Serga & B. Hillebrands & A. N. Slavin, 2006. "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping," Nature, Nature, vol. 443(7110), pages 430-433, September.
    2. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. V. E. Demidov & S. Urazhdin & B. Divinskiy & V. D. Bessonov & A. B. Rinkevich & V. V. Ustinov & S. O. Demokritov, 2017. "Chemical potential of quasi-equilibrium magnon gas driven by pure spin current," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Dennis Hardt & Reza Doostani & Sebastian Diehl & Nina Ser & Achim Rosch, 2025. "Propelling ferrimagnetic domain walls by dynamical frustration," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. K. An & M. Xu & A. Mucchietto & C. Kim & K.-W. Moon & C. Hwang & D. Grundler, 2024. "Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ellen Fogh & Mithilesh Nayak & Oleksandr Prokhnenko & Maciej Bartkowiak & Koji Munakata & Jian-Rui Soh & Alexandra A. Turrini & Mohamed E. Zayed & Ekaterina Pomjakushina & Hiroshi Kageyama & Hiroyuki , 2024. "Field-induced bound-state condensation and spin-nematic phase in SrCu2(BO3)2 revealed by neutron scattering up to 25.9 T," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63350-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.