IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63250-3.html
   My bibliography  Save this article

Large protein databases reveal structural complementarity and functional locality

Author

Listed:
  • Paweł Szczerbiak

    (Sano Centre for Computational Medicine
    Jagiellonian University)

  • Lukasz M. Szydlowski

    (Sano Centre for Computational Medicine
    Jagiellonian University)

  • Witold Wydmański

    (Jagiellonian University
    Jagiellonian University)

  • P. Douglas Renfrew

    (Flatiron Institute)

  • Julia Koehler Leman

    (Open Molecular Software Foundation)

  • Tomasz Kosciolek

    (Sano Centre for Computational Medicine)

Abstract

Recent breakthroughs in protein structure prediction have led to a surge in high-quality 3D models, highlighting the need for efficient computational solutions. In our work, we examine the structural clusters from the AlphaFold Protein Structure Database (AFDB), a high-quality subset of ESMAtlas, and the Microbiome Immunity Project (MIP). We create a single cohesive low-dimensional representation of the resulting protein space. We show that, while each database occupies distinct regions, they collectively exhibit significant overlap in their functional profiles. High-level biological functions tend to cluster in particular regions, revealing a shared functional landscape despite the diverse sources of data. By creating a representation of protein structure space, localizing functional annotations within this space, and providing an open-access web-server for exploration, this work offers insights for future research concerning protein sequence-structure-function relationships, enabling biological questions to be asked about taxonomic assignments, environmental factors, or functional specificity. This approach is generalizable, thus enabling further discovery beyond findings presented here.

Suggested Citation

  • Paweł Szczerbiak & Lukasz M. Szydlowski & Witold Wydmański & P. Douglas Renfrew & Julia Koehler Leman & Tomasz Kosciolek, 2025. "Large protein databases reveal structural complementarity and functional locality," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63250-3
    DOI: 10.1038/s41467-025-63250-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63250-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63250-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Stefanie Duller & Simone Vrbancic & Łukasz Szydłowski & Alexander Mahnert & Marcus Blohs & Michael Predl & Christina Kumpitsch & Verena Zrim & Christoph Högenauer & Tomasz Kosciolek & Ruth A. Schmitz , 2024. "Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Vladimir Gligorijević & P. Douglas Renfrew & Tomasz Kosciolek & Julia Koehler Leman & Daniel Berenberg & Tommi Vatanen & Chris Chandler & Bryn C. Taylor & Ian M. Fisk & Hera Vlamakis & Ramnik J. Xavie, 2021. "Structure-based protein function prediction using graph convolutional networks," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    7. Janani Durairaj & Andrew M. Waterhouse & Toomas Mets & Tetiana Brodiazhenko & Minhal Abdullah & Gabriel Studer & Gerardo Tauriello & Mehmet Akdel & Antonina Andreeva & Alex Bateman & Tanel Tenson & Va, 2023. "Uncovering new families and folds in the natural protein universe," Nature, Nature, vol. 622(7983), pages 646-653, October.
    8. Inigo Barrio-Hernandez & Jingi Yeo & Jürgen Jänes & Milot Mirdita & Cameron L. M. Gilchrist & Tanita Wein & Mihaly Varadi & Sameer Velankar & Pedro Beltrao & Martin Steinegger, 2023. "Clustering predicted structures at the scale of the known protein universe," Nature, Nature, vol. 622(7983), pages 637-645, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Stefanie Duller & Simone Vrbancic & Łukasz Szydłowski & Alexander Mahnert & Marcus Blohs & Michael Predl & Christina Kumpitsch & Verena Zrim & Christoph Högenauer & Tomasz Kosciolek & Ruth A. Schmitz , 2024. "Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Christian D. Madsen & Agnese Barbensi & Stephen Y. Zhang & Lucy Ham & Alessia David & Douglas E. V. Pires & Michael P. H. Stumpf, 2025. "The topological properties of the protein universe," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    4. Karel Weg & Erinc Merdivan & Marie Piraud & Holger Gohlke, 2025. "TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Ziqi Gao & Chenran Jiang & Jiawen Zhang & Xiaosen Jiang & Lanqing Li & Peilin Zhao & Huanming Yang & Yong Huang & Jia Li, 2023. "Hierarchical graph learning for protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Veda Sheersh Boorla & Costas D. Maranas, 2025. "CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Jessie Lynda Fields & Hua Zhang & Nathan F. Bellis & Holly A. Petersen & Sajal K. Halder & Shane T. Rich-New & Mart Krupovic & Hui Wu & Fengbin Wang, 2024. "Structural diversity and clustering of bacterial flagellar outer domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Gustavo Arango-Argoty & Elly Kipkogei & Ross Stewart & Gerald J. Sun & Arijit Patra & Ioannis Kagiampakis & Etai Jacob, 2025. "Pretrained transformers applied to clinical studies improve predictions of treatment efficacy and associated biomarkers," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    10. David Ding & Ada Y. Shaw & Sam Sinai & Nathan Rollins & Noam Prywes & David F. Savage & Michael T. Laub & Debora S. Marks, 2024. "Protein design using structure-based residue preferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Damian J. Magill & Timofey A. Skvortsov, 2025. "ProFlex as a linguistic bridge for decoding protein dynamics in normal mode analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Marco Malatesta & Emanuele Fornasier & Martino Luigi Salvo & Angela Tramonti & Erika Zangelmi & Alessio Peracchi & Andrea Secchi & Eugenia Polverini & Gabriele Giachin & Roberto Battistutta & Roberto , 2024. "One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. John G. Ricca & Holly A. Petersen & Adam Grosvirt-Dramen & Xavier Mayali & Sarah H. Naylon & Bobby G. Duersch & Craig P. Dufresne & Peter K. Weber & Ravi R. Sonani & Peter E. Prevelige & Allon I. Hoch, 2025. "A family of tubular pili from harmful algal bloom forming cyanobacterium Microcystis aeruginosa," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    18. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    19. Jiabao Han & Hanyu Bai & Fan Li & Ying Zhang & Qi Zhou & Wei Li, 2025. "Engineering a streamlined virus-like particle for programmable tissue-specific gene delivery," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    20. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63250-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.