IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63211-w.html
   My bibliography  Save this article

ALS/FTD-linked TBK1 deficiency in microglia induces an aged-like microglial signature and drives social recognition deficits in mice

Author

Listed:
  • Isadora Lenoel

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Matthieu Ribon

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Félicie Lorenc

    (Université de Strasbourg, Inserm, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS)

  • Aurélien Diebold

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Clementine E. Philibert

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière
    Boston University)

  • David Robaldo

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Manel Badsi

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Julianne Perronnet

    (Sorbonne Université, UMS 28, Phénotypage du petit animal)

  • Julie Lameth

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Felix Berriat

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Hidemi Misawa

    (Keio University)

  • Marie Coutelier

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Raphaelle Cassel

    (Université de Strasbourg, Inserm, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS)

  • Nadège Sarrazin

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Coline Jost-Mousseau

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Delphine Bohl

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Stéphanie Millecamps

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Michel Mallat

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • David Brenner

    (University of Ulm
    Ulm Site)

  • Jochen H. Weishaupt

    (University of Ulm)

  • Séverine Boillée

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

  • Christian S. Lobsiger

    (Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière)

Abstract

TANK-Binding Kinase 1 (TBK1) is involved in autophagy and immune signaling. Dominant loss-of-function mutations in TBK1 have been linked to Amyotrophic Lateral Sclerosis (ALS), Fronto-temporal dementia (FTD), and ALS/FTD. However, pathogenic mechanisms remain unclear, particularly the cell-type specific disease contributions of TBK1 mutations. Here, we show that deleting Tbk1 from mouse motor neurons does not induce transcriptional stress, despite lifelong signs of autophagy deregulations. Conversely, Tbk1 deletion in microglia alters their homeostasis and reactive responses. In both spinal cord and brain, Tbk1 deletion leads to a pro-inflammatory, primed microglial signature with features of ageing and neurodegeneration. While it does not induce or modify ALS-like motor neuron damage, microglial Tbk1 deletion is sufficient to cause early FTD-like social recognition deficits. This phenotype is linked to focal microglial activation and T cell infiltration in the substantia nigra pars reticulata and pallidum. Our results reveal that part of TBK1-linked FTD disease originates from microglial dysfunction.

Suggested Citation

  • Isadora Lenoel & Matthieu Ribon & Félicie Lorenc & Aurélien Diebold & Clementine E. Philibert & David Robaldo & Manel Badsi & Julianne Perronnet & Julie Lameth & Felix Berriat & Hidemi Misawa & Marie , 2025. "ALS/FTD-linked TBK1 deficiency in microglia induces an aged-like microglial signature and drives social recognition deficits in mice," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63211-w
    DOI: 10.1038/s41467-025-63211-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63211-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63211-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jelena Scekic-Zahirovic & Inmaculada Sanjuan-Ruiz & Vanessa Kan & Salim Megat & Pierre Rossi & Stéphane Dieterlé & Raphaelle Cassel & Marguerite Jamet & Pascal Kessler & Diana Wiesner & Laura Tzeplaef, 2021. "Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Salome Funes & Jonathan Jung & Del Hayden Gadd & Michelle Mosqueda & Jianjun Zhong & Shankaracharya & Matthew Unger & Karly Stallworth & Debra Cameron & Melissa S. Rotunno & Pepper Dawes & Megan Fowle, 2024. "Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    3. Yuto Hasegawa & Juhyun Kim & Gianluca Ursini & Yan Jouroukhin & Xiaolei Zhu & Yu Miyahara & Feiyi Xiong & Samskruthi Madireddy & Mizuho Obayashi & Beat Lutz & Akira Sawa & Solange P. Brown & Mikhail V, 2023. "Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Björn F. Vahsen & Sumedha Nalluru & Georgia R. Morgan & Lucy Farrimond & Emily Carroll & Yinyan Xu & Kaitlyn M. L. Cramb & Benazir Amein & Jakub Scaber & Antigoni Katsikoudi & Ana Candalija & Mireia C, 2023. "C9orf72-ALS human iPSC microglia are pro-inflammatory and toxic to co-cultured motor neurons via MMP9," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Susanna Molas & Timothy G. Freels & Rubing Zhao-Shea & Timothy Lee & Pablo Gimenez-Gomez & Melanie Barbini & Gilles E. Martin & Andrew R. Tapper, 2024. "Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhefan Stephen Chen & Shaohong Isaac Peng & Lok I Leong & Terence Gall-Duncan & Nathan Siu Jun Wong & Tsz Ho Li & Xiao Lin & Yuming Wei & Alex Chun Koon & Junzhe Huang & Jacquelyne Ka-Li Sun & Clinton, 2025. "Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    2. Santiago Mora & Anna Stuckert & Rasmus Huth Friis & Kimberly Pietersz & Gith Noes-Holt & Roser Montañana-Rosell & Haoyu Wang & Andreas Toft Sørensen & Raghavendra Selvan & Joost Verhaagen & Ilary Allo, 2024. "Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63211-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.