IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63173-z.html
   My bibliography  Save this article

Ultrawide-temperature-stable high-entropy relaxor ferroelectrics for energy-efficient capacitors

Author

Listed:
  • Shiyu Zhou

    (Tongji University)

  • Yucheng Zhou

    (Technische Universität Darmstadt)

  • Linhai Li

    (Chinese Academy of Sciences)

  • Zhenhao Fan

    (Harbin Institute of Technology)

  • Wenfeng Yue

    (Harbin Institute of Technology)

  • Zhengqian Fu

    (Chinese Academy of Sciences)

  • Xuefeng Chen

    (Chinese Academy of Sciences)

  • Baixiang Xu

    (Technische Universität Darmstadt)

  • Tengfei Hu

    (Chinese Academy of Sciences)

  • Dawei Wang

    (Harbin Institute of Technology)

  • Tongqing Yang

    (Tongji University)

Abstract

The development of dielectric ceramics that simultaneously achieve high energy density and ultra-broad temperature stability remains a fundamental challenge for advanced electrostatic capacitors. Here, we report a high-entropy engineering strategy that transforms conventional relaxor ferroelectric BT-Bi(Mg0.5Zr0.5)O3 into entropy-stabilized BT-H through a dual-phase cationic disorder modulation. By maximizing configurational entropy, this approach induces atomic-scale lattice heterogeneity with reduced size of polar units, and establishes temperature-adaptive multiphase coexistence structure, effectively decoupling polarization configuration from thermal fluctuations. Consequently, the optimized BT-H ceramics exhibit extraordinary recoverable energy density (Wrec) of 8.9 J cm-3, near ideal conversion efficiency (η) of ~ 97.8 % and superior temperature stability of ΔWrec ~±9 % and Δη ~ ±4.8% over a ultrawide operational range (−85-220 °C). This work validates the entropy-mediated cocktail effect, demonstrating that leveraging high-entropy materials to design capacitors with superior integrated energy storage performance is an advanced and viable strategy.

Suggested Citation

  • Shiyu Zhou & Yucheng Zhou & Linhai Li & Zhenhao Fan & Wenfeng Yue & Zhengqian Fu & Xuefeng Chen & Baixiang Xu & Tengfei Hu & Dawei Wang & Tongqing Yang, 2025. "Ultrawide-temperature-stable high-entropy relaxor ferroelectrics for energy-efficient capacitors," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63173-z
    DOI: 10.1038/s41467-025-63173-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63173-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63173-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weichen Zhao & Zhaobo Liu & Diming Xu & Ge Wang & Da Li & Jinnan Liu & Zhentao Wang & Yan Guo & Jiajia Ren & Tao Zhou & Lixia Pang & Hongwei Yang & Wenfeng Liu & Houbin Huang & Di Zhou, 2025. "Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Kun Wei & Jianhong Duan & He Qi & Linzhao Ma & Qianbiao Du & Huifen Yu & Haoyu Wang & Xiaoming Shi & Gaosheng Li & Zhikang Shuai & Hao Li, 2025. "Collaborative design of polarization and antiferrodistortion configurations in high energy capacitive relaxor ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Wenjun Cao & Yanwei Wu & Xiaoyu Yang & Daqin Guan & Xuecen Huang & Feng Li & Youmin Guo & Chunchang Wang & Binghui Ge & Xu Hou & Zhenxiang Cheng, 2025. "Breaking polarization-breakdown strength paradox for ultrahigh energy storage density in NBT-based ceramics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Xiangfu Zeng & Jinfeng Lin & Gaolei Dong & Jie Shen & Luomeng Tang & Qifa Lin & Simin Wang & Min Gao & Chunlin Zhao & Tengfei Lin & Laihui Luo & Chao Chen & Baisheng Sa & Cong Lin & Xiao Wu & Jiwei Zh, 2025. "Polymorphic relaxor phase and defect dipole polarization co-reinforced capacitor energy storage in temperature-monitorable high-entropy ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Xiaoyan Dong & Zhengqian Fu & Zhipeng Wang & Xiang Lv & Jiagang Wu, 2025. "Engineering relaxors by embedding ultra-weak polar regions for superior energy storage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Yiqian Liu & Bingbing Yang & Shun Lan & Zhifang Zhou & Lvye Dou & Ce-Wen Nan & Yuan-Hua Lin, 2025. "Harnessing local inhomogeneity for enhanced dielectric energy storage," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Da Li & Zhaobo Liu & Weichen Zhao & Yan Guo & Zhentao Wang & Diming Xu & Houbing Huang & Li-Xia Pang & Tao Zhou & Wen-Feng Liu & Di Zhou, 2025. "Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Zhentao Wang & Da Li & Wenyuan Liu & Liqiang He & Diming Xu & Jinnan Liu & Jiajia Ren & Xin Wang & Yang Liu & Guoqiang He & Jian Bao & Zhen Fang & Guiwei Yan & Xu Liang & Tao Zhou & Weichen Zhao & Wen, 2025. "Ultra-high energy storage in lead-free NaNbO3-based relaxor ceramics with directional slush-like polar structures design," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Xi Kong & Letao Yang & Fanqi Meng & Tao Zhang & Hejin Zhang & Yuan-Hua Lin & Houbing Huang & Shujun Zhang & Jinming Guo & Ce-Wen Nan, 2025. "High-entropy engineered BaTiO3-based ceramic capacitors with greatly enhanced high-temperature energy storage performance," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    11. Guoqiang Xi & Yue-Wen Fang & Dongxing Zheng & Shuai Xu & Hangren Li & Jie Tu & Fangyuan Zhu & Xudong Liu & Xiuqiao Liu & Qianqian Yang & Jiushe He & Junwei Zhang & Wugang Liao & Jiesu Wang & Shiyao Wu, 2025. "Anionic Strategy-Modulated Magnetic Ordering in Super-elongated Multiferroic Epitaxial Films," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Ying Yang & Ke Xu & Bin Yang & Xu Hou & Zhanming Dou & Yuhong Li & Zihao Zheng & Gengguang Luo & Nengneng Luo & Guanglong Ge & Jiwei Zhai & Yuanyuan Fan & Jing Wang & Haoming Yang & Yao Zhang & Jing W, 2025. "Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025. "High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Yang Li & Ningbo Fan & Jie Wu & Bin Xu & Xuexin Li & Xuechen Liu & Yizhou Xiao & Dingwei Hou & Xinya Feng & Jinjing Zhang & Shujun Zhang & Jinglei Li & Fei Li, 2024. "Enhanced energy storage performance in NBT-based MLCCs via cooperative optimization of polarization and grain alignment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Antu Laha & Suguru Yoshida & Francisco Marques dos Santos Vieira & Hemian Yi & Seng Huat Lee & Sai Venkata Gayathri Ayyagari & Yingdong Guan & Lujin Min & Jose Gonzalez Jimenez & Leixin Miao & David G, 2024. "High-entropy engineering of the crystal and electronic structures in a Dirac material," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yangfei Gao & Zizheng Song & Haichao Hu & Junwen Mei & Ruirui Kang & Xiaopei Zhu & Bian Yang & Jinyou Shao & Zibin Chen & Fei Li & Shujun Zhang & Xiaojie Lou, 2024. "Optimizing high-temperature energy storage in tungsten bronze-structured ceramics via high-entropy strategy and bandgap engineering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yongxiao Zhou & Tianfu Zhang & Liang Chen & Huifen Yu & Ruiyu Wang & Hao Zhang & Jie Wu & Shiqing Deng & He Qi & Chang Zhou & Jun Chen, 2025. "Design of antiferroelectric polarization configuration for ultrahigh capacitive energy storage via increasing entropy," Nature Communications, Nature, vol. 16(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63173-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.