IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63162-2.html
   My bibliography  Save this article

Metagenomic analysis reveals how multiple stressors disrupt virus–host interactions in multi-trophic freshwater mesocosms

Author

Listed:
  • Tao Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Peiyu Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Karthik Anantharaman

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    Indian Institute of Technology Madras)

  • Huan Wang

    (Chinese Academy of Sciences
    Hainan University
    Hainan University)

  • Huan Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Min Zhang

    (Huazhong Agricultural University)

  • Jun Xu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Hainan University)

Abstract

Virus–host interactions are vital to microbiome ecology and evolution, yet their responses to environmental stressors under global change remain poorly understood. We perform a 10-month outdoor mesocosm experiment simulating multi-trophic freshwater shallow lake ecosystems. Using a fully factorial design comprising eight treatments with six replicates each, we assess the individual and combined effects of climate warming, nutrient loading, and pesticide loading on DNA viral communities and their interactions with microbial hosts. Metagenomic sequencing recovers 12,359 viral OTUs and 1628 unique prokaryotic metagenome-assembled genomes. Our analysis shows that combined nutrient and pesticide loading causes significant disruption by synergistically reducing viral alpha diversity while altering beta diversity and predator-prey linkages. Stressors lead to the simplification of virus-bacteria cross-kingdom networks, with nutrient-pesticide combinations exerting the strongest influence, although warming impacts diminish in the presence of pesticides. Stressor-driven changes also affect the abundance and composition of viral auxiliary metabolic genes, leading to complex shifts in virus-mediated metabolic pathways under multiple stress conditions. These findings underscore the importance of understanding the regulatory role of viruses on microbial communities to effectively address the challenges posed by global change.

Suggested Citation

  • Tao Wang & Peiyu Zhang & Karthik Anantharaman & Huan Wang & Huan Zhang & Min Zhang & Jun Xu, 2025. "Metagenomic analysis reveals how multiple stressors disrupt virus–host interactions in multi-trophic freshwater mesocosms," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63162-2
    DOI: 10.1038/s41467-025-63162-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63162-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63162-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Knowles & C. B. Silveira & B. A. Bailey & K. Barott & V. A. Cantu & A. G. Cobián-Güemes & F. H. Coutinho & E. A. Dinsdale & B. Felts & K. A. Furby & E. E. George & K. T. Green & G. B. Gregoracci & , 2016. "Correction: Corrigendum: Lytic to temperate switching of viral communities," Nature, Nature, vol. 539(7627), pages 123-123, November.
    2. Mengting Maggie Yuan & Xue Guo & Linwei Wu & Ya Zhang & Naijia Xiao & Daliang Ning & Zhou Shi & Xishu Zhou & Liyou Wu & Yunfeng Yang & James M. Tiedje & Jizhong Zhou, 2021. "Climate warming enhances microbial network complexity and stability," Nature Climate Change, Nature, vol. 11(4), pages 343-348, April.
    3. Juan A. Bonachela, 2024. "Viral plasticity facilitates host diversity in challenging environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yi Yi & Shunzhang Liu & Yali Hao & Qingyang Sun & Xinjuan Lei & Yecheng Wang & Jiahua Wang & Mujie Zhang & Shan Tang & Qingxue Tang & Yue Zhang & Xipeng Liu & Yinzhao Wang & Xiang Xiao & Huahua Jian, 2023. "A systematic analysis of marine lysogens and proviruses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Meishun Yu & Menghui Zhang & Runying Zeng & Ruolin Cheng & Rui Zhang & Yanping Hou & Fangfang Kuang & Xuejin Feng & Xiyang Dong & Yinfang Li & Zongze Shao & Min Jin, 2024. "Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. B. Knowles & C. B. Silveira & B. A. Bailey & K. Barott & V. A. Cantu & A. G. Cobián-Güemes & F. H. Coutinho & E. A. Dinsdale & B. Felts & K. A. Furby & E. E. George & K. T. Green & G. B. Gregoracci & , 2016. "Lytic to temperate switching of viral communities," Nature, Nature, vol. 531(7595), pages 466-470, March.
    7. Thomas P. Smith & Thomas J. H. Thomas & Bernardo García-Carreras & Sofía Sal & Gabriel Yvon-Durocher & Thomas Bell & Samrāt Pawar, 2019. "Community-level respiration of prokaryotic microbes may rise with global warming," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Kristopher Kieft & Zhichao Zhou & Rika E. Anderson & Alison Buchan & Barbara J. Campbell & Steven J. Hallam & Matthias Hess & Matthew B. Sullivan & David A. Walsh & Simon Roux & Karthik Anantharaman, 2021. "Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengzhi Ji & Jiayin Zhou & Yan Li & Kai Ma & Wen Song & Yueyue Li & Jizhong Zhou & Qichao Tu, 2024. "Biodiversity of mudflat intertidal viromes along the Chinese coasts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Liyun An & Xinwu Liu & Jianwei Wang & Jinbo Xu & Xiaoli Chen & Xiaonan Liu & Bingxin Hu & Yong Nie & Xiao-Lei Wu, 2024. "Global diversity and ecological functions of viruses inhabiting oil reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Ji-Woo Park & Yeo-Eun Yun & Jin Ah Cho & Su-In Yoon & Su-A In & Eun-Jin Park & Min-Soo Kim, 2025. "Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Alyzza M. Calayag & Taylor Priest & Ellen Oldenburg & Jan Muschiol & Ovidiu Popa & Matthias Wietz & David M. Needham, 2025. "Arctic Ocean virus communities and their seasonality, bipolarity, and prokaryotic associations," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Javier Lopez-Simon & Marina Vila-Nistal & Aleksandra Rosenova & Daniele Corte & Federico Baltar & Manuel Martinez-Garcia, 2023. "Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Jia-nan Lu & Yuanqing Chao & Li Tian & Xi Zhong & Ziwu Chen & Huan He & Bi Huang & Mengyao Li & Zekai Feng & Huayuan Feng & Chang Hu & Shunkang Zhou & Liqi Zhang & Yulu Yang & Zhepu Ruan & Kengbo Ding, 2025. "DNA viral community enhances microbial carbon fixation capacity via auxiliary metabolic genes in contaminated soils," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Alexa M. Nicolas & Ella T. Sieradzki & Jennifer Pett-Ridge & Jillian F. Banfield & Michiko E. Taga & Mary K. Firestone & Steven J. Blazewicz, 2023. "A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Joachim Johansen & Damian R. Plichta & Jakob Nybo Nissen & Marie Louise Jespersen & Shiraz A. Shah & Ling Deng & Jakob Stokholm & Hans Bisgaard & Dennis Sandris Nielsen & Søren J. Sørensen & Simon Ras, 2022. "Genome binning of viral entities from bulk metagenomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Dongnan Huang & Han Zheng & Jing Cheng & Guanxiong Wu & Lei Zheng & En Xie, 2023. "Nitrogen and Phosphorus Discriminate the Assembly Processes of Prokaryotic and Eukaryotic Algae in an Agricultural Drainage Receiving Lake," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Meishun Yu & Menghui Zhang & Runying Zeng & Ruolin Cheng & Rui Zhang & Yanping Hou & Fangfang Kuang & Xuejin Feng & Xiyang Dong & Yinfang Li & Zongze Shao & Min Jin, 2024. "Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Dimitrios - Georgios Kontopoulos & Arnaud Sentis & Martin Daufresne & Natalia Glazman & Anthony I. Dell & Samraat Pawar, 2024. "No universal mathematical model for thermal performance curves across traits and taxonomic groups," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Yao Du & Yan Yang & Shengnan Wu & Xiaoxia Gao & Xiaoqing He & Shikui Dong, 2025. "Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Wenmin Wang & Zhen Wang & Hongbo Ling & Xu Zheng & Chaoqun Chen & Jiaping Wang & Zhibo Cheng, 2025. "Effects of Reclaimed Water Irrigation on Soil Properties and the Composition and Diversity of Microbial Communities in Northwest China," Sustainability, MDPI, vol. 17(1), pages 1-16, January.
    17. Taotao Chen & Erping Cui & Yanbo Zhang & Ge Gao & Hao You & Yurun Tian & Chao Hu & Yuan Liu & Tao Fan & Xiangyang Fan, 2024. "Microbial Network Complexity Helps to Reduce the Deep Migration of Chemical Fertilizer Nitrogen Under the Combined Application of Varying Irrigation Amounts and Multiple Nitrogen Sources," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
    18. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. M. C. Ramaboli & S. Ocvirk & M. Khan Mirzaei & B. L. Eberhart & M. Valdivia-Garcia & A. Metwaly & K. Neuhaus & G. Barker & J. Ru & L. T. Nesengani & D. Mahdi-Joest & A. S. Wilson & S. K. Joni & D. C. , 2024. "Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Bingjie Yu & Zongjiu Sun & Yuxuan Cui & Huixia Liu, 2025. "Linking the Changes of Soil Organic Carbon with Rare Bacterial Diversity in Sagebrush Desert Grassland Under Grazing Exclusion," Agriculture, MDPI, vol. 15(18), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63162-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.