IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62557-5.html
   My bibliography  Save this article

On-chip, inverse-designed active wavelength division multiplexer at THz frequencies

Author

Listed:
  • Valerio Digiorgio

    (ETH Zürich)

  • Urban Senica

    (ETH Zürich)

  • Paolo Micheletti

    (ETH Zürich)

  • Mattias Beck

    (ETH Zürich)

  • Jérôme Faist

    (ETH Zürich)

  • Giacomo Scalari

    (ETH Zürich)

Abstract

The development of photonic integrated components for the terahertz region has become an active and growing research field. Despite the numerous applications in this spectral range, hardware design still faces several challenges. We demonstrate an on-chip, active wavelength division multiplexer (WDM) operating at THz frequencies (> 1 THz). The WDM architecture is based on an inverse design topology optimization applied to an active quantum cascade heterostructure embedded in a double metal cavity and planarized with a polymer. Such an approach enables the fabrication of a strongly subwavelength device, with a normalized volume of V/λ3 ≃ 0.5. The WDM input is coupled to an integrated THz quantum cascade laser (QCL) frequency comb, providing three 330 GHz broadband output ports, ranging from 2.2 THz–3.2 THz, with a maximum crosstalk of -6 dB. The three ports are outcoupled via integrated broadband patch array antennas enabling surface emission. Such a device can also operate as a stand-alone element, unlocking advanced on-chip signal processing in the THz range.

Suggested Citation

  • Valerio Digiorgio & Urban Senica & Paolo Micheletti & Mattias Beck & Jérôme Faist & Giacomo Scalari, 2025. "On-chip, inverse-designed active wavelength division multiplexer at THz frequencies," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62557-5
    DOI: 10.1038/s41467-025-62557-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62557-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62557-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Ma & Nicholas J. Karl & Sara Bretin & Guillaume Ducournau & Daniel M. Mittleman, 2017. "Frequency-division multiplexer and demultiplexer for terahertz wireless links," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    2. Haowen Shu & Lin Chang & Yuansheng Tao & Bitao Shen & Weiqiang Xie & Ming Jin & Andrew Netherton & Zihan Tao & Xuguang Zhang & Ruixuan Chen & Bowen Bai & Jun Qin & Shaohua Yu & Xingjun Wang & John E. , 2022. "Microcomb-driven silicon photonic systems," Nature, Nature, vol. 605(7910), pages 457-463, May.
    3. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Pablo Marin-Palomo & Juned N. Kemal & Maxim Karpov & Arne Kordts & Joerg Pfeifle & Martin H. P. Pfeiffer & Philipp Trocha & Stefan Wolf & Victor Brasch & Miles H. Anderson & Ralf Rosenberger & Kovendh, 2017. "Microresonator-based solitons for massively parallel coherent optical communications," Nature, Nature, vol. 546(7657), pages 274-279, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shihan Hong & Jiachen Wu & Yiwei Xie & Xiyuan Ke & Huan Li & Linyan Lyv & Yingying Peng & Qingrui Yao & Yaocheng Shi & Ke Wang & Leimeng Zhuang & Pan Wang & Daoxin Dai, 2025. "Versatile parallel signal processing with a scalable silicon photonic chip," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Changhao Han & Qipeng Yang & Jun Qin & Yan Zhou & Zhao Zheng & Yunhao Zhang & Haoren Wang & Yu Sun & Junde Lu & Yimeng Wang & Zhangfeng Ge & Yichen Wu & Lei Wang & Zhixue He & Shaohua Yu & Weiwei Hu &, 2025. "Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Chenghao Lao & Xing Jin & Lin Chang & Heming Wang & Zhe Lv & Weiqiang Xie & Haowen Shu & Xingjun Wang & John E. Bowers & Qi-Fan Yang, 2023. "Quantum decoherence of dark pulses in optical microresonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Aolong Sun & Sizhe Xing & Xuyu Deng & Ruoyu Shen & An Yan & Fangchen Hu & Yuqin Yuan & Boyu Dong & Junhao Zhao & Ouhan Huang & Ziwei Li & Jianyang Shi & Yingjun Zhou & Chao Shen & Yiheng Zhao & Bingzh, 2025. "Edge-guided inverse design of digital metamaterial-based mode multiplexers for high-capacity multi-dimensional optical interconnect," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Sahil Pontula & Sachin Vaidya & Charles Roques-Carmes & Shiekh Zia Uddin & Marin Soljačić & Yannick Salamin, 2025. "Non-reciprocal frequency conversion in a non-Hermitian multimode nonlinear system," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Shihuan Ran & Yu Guo & Yuanbin Liu & Ting Miao & Yangbo Wu & Yang Qin & Yuyao Guo & Liangjun Lu & Yixiao Zhu & Yu Li & Qunbi Zhuge & Jianping Chen & Linjie Zhou, 2025. "A 4×256 Gbps silicon transmitter with on-chip adaptive dispersion compensation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Xiaomin Lv & Binbin Nie & Chen Yang & Rui Ma & Ze Wang & Yanwu Liu & Xing Jin & Kaixuan Zhu & Zhenyu Chen & Du Qian & Guanyu Zhang & Guowei Lv & Qihuang Gong & Fang Bo & Qi-Fan Yang, 2025. "Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    14. Junliang Dong & Alessandro Tomasino & Giacomo Balistreri & Pei You & Anton Vorobiov & Étienne Charette & Boris Le Drogoff & Mohamed Chaker & Aycan Yurtsever & Salvatore Stivala & Maria A. Vincenti & C, 2022. "Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Arkadev Roy & Luis Ledezma & Luis Costa & Robert Gray & Ryoto Sekine & Qiushi Guo & Mingchen Liu & Ryan M. Briggs & Alireza Marandi, 2023. "Visible-to-mid-IR tunable frequency comb in nanophotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Matthew Garrett & Yang Liu & Moritz Merklein & Cong Tinh Bui & Choon Kong Lai & Duk-Yong Choi & Stephen J. Madden & Alvaro Casas-Bedoya & Benjamin J. Eggleton, 2023. "Integrated microwave photonic notch filter using a heterogeneously integrated Brillouin and active-silicon photonic circuit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Liangliang Min & Haoxuan Sun & Linqi Guo & Meng Wang & Fengren Cao & Jun Zhong & Liang Li, 2024. "Frequency-selective perovskite photodetector for anti-interference optical communications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Chenbo Zhang & Yixiao Zhu & Jingjing Lin & Bibo He & Rongwei Liu & Yicheng Xu & Nuo Chen & Xuanjian He & Jinming Tao & Zhike Zhang & Tao Chu & Lilin Yi & Qunbi Zhuge & Weiwei Hu & Zhangyuan Chen & Wei, 2024. "High-fidelity sub-petabit-per-second self-homodyne fronthaul using broadband electro-optic combs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62557-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.