IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62485-4.html
   My bibliography  Save this article

CUT&Tag reveals unconventional G-quadruplex landscape in Mycobacterium tuberculosis in response to oxidative stress

Author

Listed:
  • Ilaria Maurizio

    (University of Padua)

  • Emanuela Ruggiero

    (University of Padua)

  • Irene Zanin

    (University of Padua)

  • Marta Conflitti

    (University of Padua)

  • Giulia Nicoletto

    (University of Padua)

  • Roberta Provvedi

    (University of Padua)

  • Sara N. Richter

    (University of Padua
    Padua University Hospital)

Abstract

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a global health threat due to increasing drug resistance and high mortality rates. To combat tuberculosis effectively, novel therapeutic targets are urgently needed. G-quadruplexes (G4s) represent promising candidates for this purpose. In this study, we successfully apply the cleavage under targets and tagmentation (CUT&Tag) technique for the first time in bacteria, mapping the G4 landscape in Mtb under standard and oxidative stress conditions, the latter mimicking the environment Mtb faces within macrophages. We validate the CUT&Tag protocol using an antibody against the RNA polymerase β-subunit, confirming its association with actively transcribed genes. Employing the anti-G4 antibody BG4, we discovered that Mtb G4s, unlike their eukaryotic counterparts, predominantly locate within gene coding sequences and consist of two-guanine tract motifs. Notably, oxidative stress increases G4 formation, correlating with reduced gene expression. Our findings provide the first evidence of G4 formation in Mtb cells and suggest their potential role in bacterial survival within macrophages. This study demonstrates the successful application of CUT&Tag in bacteria and unveils an unconventional G4 landscape in Mtb, offering new insights into bacterial stress response mechanisms and potential therapeutic targets.

Suggested Citation

  • Ilaria Maurizio & Emanuela Ruggiero & Irene Zanin & Marta Conflitti & Giulia Nicoletto & Roberta Provvedi & Sara N. Richter, 2025. "CUT&Tag reveals unconventional G-quadruplex landscape in Mycobacterium tuberculosis in response to oxidative stress," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62485-4
    DOI: 10.1038/s41467-025-62485-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62485-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62485-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher T. Rhodes & Joyce J. Thompson & Apratim Mitra & Dhanya Asokumar & Dongjin R. Lee & Daniel J. Lee & Yajun Zhang & Eva Jason & Ryan K. Dale & Pedro P. Rocha & Timothy J. Petros, 2022. "An epigenome atlas of neural progenitors within the embryonic mouse forebrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Jason D. Buenrostro & Beijing Wu & Ulrike M. Litzenburger & Dave Ruff & Michael L. Gonzales & Michael P. Snyder & Howard Y. Chang & William J. Greenleaf, 2015. "Single-cell chromatin accessibility reveals principles of regulatory variation," Nature, Nature, vol. 523(7561), pages 486-490, July.
    3. Xiangwu Ju & Shuqi Li & Ruby Froom & Ling Wang & Mirjana Lilic & Madeleine Delbeau & Elizabeth A. Campbell & Jeremy M. Rock & Shixin Liu, 2024. "Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome," Nature, Nature, vol. 627(8003), pages 424-430, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jin & Jingchun Ma & Li Rong & Shengshuo Huang & Tuo Li & Guoxiang Jin & Zhongjun Zhou, 2025. "Semi-automated IT-scATAC-seq profiles cell-specific chromatin accessibility in differentiation and peripheral blood populations," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Yuyao Liu & Zhen Li & Xiaoyang Chen & Xuejian Cui & Zijing Gao & Rui Jiang, 2025. "INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    3. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Alistair P. Green & Florian Klimm & Aidan S. Marshall & Rein Leetmaa & Juvid Aryaman & Aurora Gómez-Durán & Patrick F. Chinnery & Nick S. Jones, 2025. "Cryptic mitochondrial DNA mutations coincide with mid-late life and are pathophysiologically informative in single cells across tissues and species," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Aaron T L Lun & Hervé Pagès & Mike L Smith, 2018. "beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-15, May.
    6. Pan Liu & Jingyi Jessica Li, 2025. "mcRigor: a statistical method to enhance the rigor of metacell partitioning in single-cell data analysis," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    7. repec:plo:pone00:0180583 is not listed on IDEAS
    8. Michael Kosicki & Dianne Laboy Cintrón & Pia Keukeleire & Max Schubach & Nicholas F. Page & Ilias Georgakopoulos-Soares & Jennifer A. Akiyama & Ingrid Plajzer-Frick & Catherine S. Novak & Momoe Kato &, 2025. "Massively parallel reporter assays and mouse transgenic assays provide correlated and complementary information about neuronal enhancer activity," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Mohamad D. Bairakdar & Wooseung Lee & Bruno Giotti & Akhil Kumar & Paula Stancl & Elvin Wagenblast & Dolores Hambardzumyan & Paz Polak & Rosa Karlic & Alexander M. Tsankov, 2025. "Learning the cellular origins across cancers using single-cell chromatin landscapes," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    10. Zhijian Li & Christoph Kuppe & Susanne Ziegler & Mingbo Cheng & Nazanin Kabgani & Sylvia Menzel & Martin Zenke & Rafael Kramann & Ivan G. Costa, 2021. "Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Ruohan Wang & Yumin Zheng & Zijian Zhang & Kailu Song & Erxi Wu & Xiaopeng Zhu & Tao P. Wu & Jun Ding, 2024. "MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    12. Menghan Wang & Ana Di Pietro-Torres & Christian Feregrino & Maëva Luxey & Chloé Moreau & Sabrina Fischer & Antoine Fages & Danilo Ritz & Patrick Tschopp, 2025. "Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Suhas V. Vasaikar & Adam K. Savage & Qiuyu Gong & Elliott Swanson & Aarthi Talla & Cara Lord & Alexander T. Heubeck & Julian Reading & Lucas T. Graybuck & Paul Meijer & Troy R. Torgerson & Peter J. Sk, 2023. "A comprehensive platform for analyzing longitudinal multi-omics data," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Akhiad Bercovich & Aviezer Lifshitz & Michal Eldar & Saifeng Cheng & Roni Stok Ranen & Yonatan Stelzer & Amos Tanay, 2025. "IceQream: Quantitative chromosome accessibility analysis using physical TF models," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    15. Yoshiharu Muto & Eryn E. Dixon & Yasuhiro Yoshimura & Haojia Wu & Kohei Omachi & Nicolas Ledru & Parker C. Wilson & Andrew J. King & N. Eric Olson & Marvin G. Gunawan & Jay J. Kuo & Jennifer H. Cox & , 2022. "Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Leyla Abbasova & Paulina Urbanaviciute & Di Hu & Joy N. Ismail & Brian M. Schilder & Alexi Nott & Nathan G. Skene & Sarah J. Marzi, 2025. "CUT&Tag recovers up to half of ENCODE ChIP-seq histone acetylation peaks," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Haowen Zhang & Li Song & Xiaotao Wang & Haoyu Cheng & Chenfei Wang & Clifford A. Meyer & Tao Liu & Ming Tang & Srinivas Aluru & Feng Yue & X. Shirley Liu & Heng Li, 2021. "Fast alignment and preprocessing of chromatin profiles with Chromap," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    19. Zhen Miao & Jianqiao Wang & Kernyu Park & Da Kuang & Junhyong Kim, 2025. "Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    20. Cheng Bei & Junhao Zhu & Peter H. Culviner & Mingyu Gan & Eric J. Rubin & Sarah M. Fortune & Qian Gao & Qingyun Liu, 2024. "Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    21. Alan Selewa & Kaixuan Luo & Michael Wasney & Linsin Smith & Xiaotong Sun & Chenwei Tang & Heather Eckart & Ivan P. Moskowitz & Anindita Basu & Xin He & Sebastian Pott, 2023. "Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62485-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.