IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62312-w.html
   My bibliography  Save this article

Self-contracting, battery-free triboelectric wound healing strip with strong wet adhesion

Author

Listed:
  • Xiangchun Meng

    (Yonsei University
    Yonsei University)

  • Xiao Xiao

    (Yonsei University
    Yonsei University)

  • Sera Jeon

    (Yonsei University
    Yonsei University)

  • Daniel Sanghyun Cho

    (Sungkyunkwan University)

  • Kejia Zhang

    (Nanjing University of Science and Technology)

  • Yong Hyun Kwon

    (Yonsei University
    Yonsei University)

  • Hyeon Mo

    (Yonsei University
    Yonsei University)

  • Yoojin Park

    (Yonsei University
    Yonsei University)

  • Byung-Joon Park

    (Yonsei University
    Yonsei University)

  • Dabin Kim

    (Yonsei University
    Yonsei University)

  • Fengyi Pang

    (Yonsei University
    Yonsei University)

  • SeongMin Kim

    (Yonsei University
    Yonsei University)

  • Byung-Ok Choi

    (Sungkyunkwan University School of Medicine
    Samsung Medical Center
    Samsung Advanced Institute for Health Sciences & Technology (SAIHST))

  • Keren Dai

    (Nanjing University of Science and Technology)

  • Sang-Woo Kim

    (Yonsei University
    Yonsei University)

Abstract

Conventional wound closure techniques, such as suturing and stapling, often cause infection, delayed healing, and tissue damage, particularly in fragile or compromised tissues. A sutureless, battery-free adhesive strip (SBF strip) is developed to integrate shape-memory-assisted mechanical approximation with impedance-matched electrical stimulation for enhanced tissue repair. The device incorporates a shape memory polymer (SMP) responsive at near-body temperature and a robust wet-adhesive interface (> 200 J m−2), enabling rapid attachment and uniform closure under mild heating (40 °C). A built-in ultrasound-driven triboelectric system achieves optimal skin-impedance matching (~50 kΩ), generating electric fields up to 0.59 kV m−1 under 0.5 W cm−2 to promote cellular migration and proliferation. Finite element simulations reveal that SMP-induced contraction redistributes local mechanical strain, reducing scarring. In vivo rat studies demonstrate a 61.7% reduction in scar area compared to sutures, along with improved epithelial regeneration, collagen deposition, and angiogenesis. This mechanically and electrically synergistic platform offers a scalable, battery-free wound therapy strategy, reducing dependence on external power and disposable components while enabling precision-guided healing.

Suggested Citation

  • Xiangchun Meng & Xiao Xiao & Sera Jeon & Daniel Sanghyun Cho & Kejia Zhang & Yong Hyun Kwon & Hyeon Mo & Yoojin Park & Byung-Joon Park & Dabin Kim & Fengyi Pang & SeongMin Kim & Byung-Ok Choi & Keren , 2025. "Self-contracting, battery-free triboelectric wound healing strip with strong wet adhesion," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62312-w
    DOI: 10.1038/s41467-025-62312-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62312-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62312-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoxue Han & Chaimongkol Saengow & Leah Ju & Wen Ren & Randy H. Ewoldt & Joseph Irudayaraj, 2024. "Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Parth Chansoria & Ameya Chaudhari & Emma L. Etter & Emily E. Bonacquisti & Mairead K. Heavey & Jiayan Le & Murali Kannan Maruthamuthu & Caden C. Kussatz & John Blackwell & Natalie E. Jasiewicz & Rani , 2024. "Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Subin Jin & Heewon Choi & Duhwan Seong & Chang-Lim You & Jong-Sun Kang & Seunghyok Rho & Won Bo Lee & Donghee Son & Mikyung Shin, 2023. "Injectable tissue prosthesis for instantaneous closed-loop rehabilitation," Nature, Nature, vol. 623(7985), pages 58-65, November.
    4. Dong-Min Lee & Minki Kang & Inah Hyun & Byung-Joon Park & Hye Jin Kim & Soo Hyun Nam & Hong-Joon Yoon & Hanjun Ryu & Hyun-moon Park & Byung-Ok Choi & Sang-Woo Kim, 2023. "An on-demand bioresorbable neurostimulator," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Hyunwoo Yuk & Claudia E. Varela & Christoph S. Nabzdyk & Xinyu Mao & Robert F. Padera & Ellen T. Roche & Xuanhe Zhao, 2019. "Dry double-sided tape for adhesion of wet tissues and devices," Nature, Nature, vol. 575(7781), pages 169-174, November.
    6. Binbin Zhang & Jiyu Li & Jingkun Zhou & Lung Chow & Guangyao Zhao & Ya Huang & Zhiqiang Ma & Qiang Zhang & Yawen Yang & Chun Ki Yiu & Jian Li & Fengjun Chun & Xingcan Huang & Yuyu Gao & Pengcheng Wu &, 2024. "A three-dimensional liquid diode for soft, integrated permeable electronics," Nature, Nature, vol. 628(8006), pages 84-92, April.
    7. Chen Chen & Zhen Wen & Jihong Shi & Xiaohua Jian & Peiyang Li & John T. W. Yeow & Xuhui Sun, 2020. "Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Yang & Lufang Wang & Wenliang Liu & Wenlong Li & Yewei Huang & Qiaofeng Jin & Li Zhang & Yuanwen Jiang & Zhiqiang Luo, 2024. "Highly-stable, injectable, conductive hydrogel for chronic neuromodulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Hossein Montazerian & Elham Davoodi & Canran Wang & Farnaz Lorestani & Jiahong Li & Reihaneh Haghniaz & Rohan R. Sampath & Neda Mohaghegh & Safoora Khosravi & Fatemeh Zehtabi & Yichao Zhao & Negar Hos, 2025. "Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Parth Chansoria & Ameya Chaudhari & Emma L. Etter & Emily E. Bonacquisti & Mairead K. Heavey & Jiayan Le & Murali Kannan Maruthamuthu & Caden C. Kussatz & John Blackwell & Natalie E. Jasiewicz & Rani , 2024. "Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Quanqian Lyu & Miaomiao Li & Lianbin Zhang & Jintao Zhu, 2024. "Structurally-colored adhesives for sensitive, high-resolution, and non-invasive adhesion self-monitoring," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yujie Hua & Kai Wang & Yingying Huo & Yaping Zhuang & Yuhui Wang & Wenzhuo Fang & Yuyan Sun & Guangdong Zhou & Qiang Fu & Wenguo Cui & Kaile Zhang, 2023. "Four-dimensional hydrogel dressing adaptable to the urethral microenvironment for scarless urethral reconstruction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Qingao Chen & Lunjun Qu & Hui Hou & Jiayue Huang & Chen Li & Ying Zhu & Yongkang Wang & Xiaohong Chen & Qian Zhou & Yan Yang & Chaolong Yang, 2024. "Long lifetimes white afterglow in slightly crosslinked polymer systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Tian Li & Haobo Qi & Cancan Zhao & Zhenming Li & Wei Zhou & Guanjin Li & Hao Zhuo & Wei Zhai, 2025. "Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Jian Li & Shengxin Jia & Dengfeng Li & Lung Chow & Qiang Zhang & Yiyuan Yang & Xiao Bai & Qingao Qu & Yuyu Gao & Zhiyuan Li & Zongze Li & Rui Shi & Binbin Zhang & Ya Huang & Xinyu Pan & Yue Hu & Zhan , 2024. "Wearable bio-adhesive metal detector array (BioMDA) for spinal implants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Shuaibing Jiang & Tony Jin & Tianqin Ning & Zhen Yang & Zhenwei Ma & Ran Huo & Yixun Cheng & Davis Kurdyla & Edmond Lam & Rong Long & Audrey Moores & Jianyu Li, 2025. "Nanowhisker glues for fatigue-resistant bioadhesion and interfacial functionalization," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ming Li & Ganghua Li & Tong Xu & Yiwen Wang & Ruidong Xu & Xinwei Zhang & Fuxing Chen & Ning Yu & Mingwei Tian, 2025. "Multi-biosensing hairband for emergency health assessment," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Limei Huang & Hao Li & Shunxi Wen & Penghui Xia & Fanzhan Zeng & Chaoyi Peng & Jun Yang & Yun Tan & Ji Liu & Lei Jiang & Jianfeng Wang, 2024. "Control nucleation for strong and tough crystalline hydrogels with high water content," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Changshun Hou & Junjia Guo & Bonan Sun & Kai Fung Chan & Xin Song & Li Zhang, 2025. "Magnetic nanostickers for active control of interface-enhanced selective bioadhesion," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Yuanchi Zhang & Cairong Li & Along Guo & Yipei Yang & Yangyi Nie & Jiaxin Liao & Ben Liu & Yanmei Zhou & Long Li & Zhitong Chen & Wei Zhang & Ling Qin & Yuxiao Lai, 2024. "Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Xihao Pan & Rui Li & Wenyue Li & Wei Sun & Yiyang Yan & Xiaochen Xiang & Jinghua Fang & Youguo Liao & Chang Xie & Xiaozhao Wang & Youzhi Cai & Xudong Yao & Hongwei Ouyang, 2024. "Silk fibroin hydrogel adhesive enables sealed-tight reconstruction of meniscus tears," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xingcan Huang & Qiang Zhang & Yawen Yang & Lung Chow & Jie Ma & Guoqiang Xu & Fang Guo & Xinxin He & Zhiyuan Li & Guangyao Zhao & Jingyou Su & Guihuan Guo & Jiachen Wang & Yanli Jiao & Zhan Gao & Jiyu, 2025. "A skin-interfaced three-dimensional closed-loop sensing and therapeutic electronic wound bandage," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    19. Pengchao Zhao & Xianfeng Xia & Xiayi Xu & Kevin Kai Chung Leung & Aliza Rai & Yingrui Deng & Boguang Yang & Huasheng Lai & Xin Peng & Peng Shi & Honglu Zhang & Philip Wai Yan Chiu & Liming Bian, 2021. "Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    20. Chaojie Yu & Mingyue Shi & Shaoshuai He & Mengmeng Yao & Hong Sun & Zhiwei Yue & Yuwei Qiu & Baijun Liu & Lei Liang & Zhongming Zhao & Fanglian Yao & Hong Zhang & Junjie Li, 2023. "Chronological adhesive cardiac patch for synchronous mechanophysiological monitoring and electrocoupling therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62312-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.