IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62256-1.html
   My bibliography  Save this article

Multichannel bioelectronic sensing using engineered Escherichia coli

Author

Listed:
  • Xu Zhang

    (Rice University)

  • Marimikel Charrier

    (Rice University)

  • Caroline M. Ajo-Franklin

    (Rice University)

Abstract

To advance environmental health and hazard detection, researchers have developed whole-cell bioelectronic sensors by engineering extracellular electron transfer to be dependent on an analyte1. However, these sensors regulate a single electron transfer pathway as an electrochemical channel, limiting the sensing information to a single analyte. We have developed a multichannel bioelectronic sensor where different chemicals regulate distinct extracellular electron transfer pathways within a single Escherichia coli cell. One channel utilizes the flavin synthesis pathway from Bacillus subtilis2 and is controlled by a cadmium-responsive promoter. Another channel, the CymA-Mtr pathway from Shewanella oneidensis3, is controlled by an arsenite-responsive promoter and activates cytochrome CymA expression4,5. We exploit the differing redox potentials of the two extracellular electron transfer pathways6 to develop a redox-potential-dependent algorithm that efficiently converts biological signals into 2-bit binary outputs. This enables our bioelectronic sensor to detect and differentiate heavy metals at EPA limits. When deployed in complex environmental water samples, our sensor effectively and accurately encodes 2-bit binary signals across various analyte conditions. Thus, our multichannel bioelectronic sensor advances the field through simultaneous detection of different chemicals by a single cell, significantly expanding information transmission and helping to safeguard human and environmental health.

Suggested Citation

  • Xu Zhang & Marimikel Charrier & Caroline M. Ajo-Franklin, 2025. "Multichannel bioelectronic sensing using engineered Escherichia coli," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62256-1
    DOI: 10.1038/s41467-025-62256-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62256-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62256-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua T. Atkinson & Lin Su & Xu Zhang & George N. Bennett & Jonathan J. Silberg & Caroline M. Ajo-Franklin, 2022. "Real-time bioelectronic sensing of environmental contaminants," Nature, Nature, vol. 611(7936), pages 548-553, November.
    2. James Chappell & Alexandra Westbrook & Matthew Verosloff & Julius B. Lucks, 2017. "Computational design of small transcription activating RNAs for versatile and dynamic gene regulation," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingjie Xie & Bohan Lu & Zhengdi Sima & Yina Liu & Haifeng Ji & Zhenqiu Gao & Peng Jiang & Harm Zalinge & Ivona Z. Mitrovic & Xuhui Sun & Zhen Wen, 2025. "Mechanical–electric dual characteristics solid–liquid interfacing sensor for accurate liquid identification," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Dalton R. George & Mark Danciu & Peter W. Davenport & Matthew R. Lakin & James Chappell & Emma K. Frow, 2024. "A bumpy road ahead for genetic biocontainment," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    3. Baiyang Liu & Christian Cuba Samaniego & Matthew R. Bennett & Elisa Franco & James Chappell, 2023. "A portable regulatory RNA array design enables tunable and complex regulation across diverse bacteria," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Bob Sluijs & Roel J. M. Maas & Ardjan J. Linden & Tom F. A. Greef & Wilhelm T. S. Huck, 2022. "A microfluidic optimal experimental design platform for forward design of cell-free genetic networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Sally Wang & Chen-Yu Chen & John R. Rzasa & Chen-Yu Tsao & Jinyang Li & Eric VanArsdale & Eunkyoung Kim & Fauziah Rahma Zakaria & Gregory F. Payne & William E. Bentley, 2023. "Redox-enabled electronic interrogation and feedback control of hierarchical and networked biological systems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Aidan T. Riley & James M. Robson & Aiganysh Ulanova & Alexander A. Green, 2025. "Generative and predictive neural networks for the design of functional RNA molecules," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Grace E. Vezeau & Lipika R. Gadila & Howard M. Salis, 2023. "Automated design of protein-binding riboswitches for sensing human biomarkers in a cell-free expression system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Mengmeng Liu & Hongchen Guo & Yu Jun Tan & Kelu Yu & Qiye Guan & Evgeny Zamburg & Wen Cheng & Xinyu Wang & Lili Zhou & Haiming Chen & Yunxia Jin & Xu Cheng & Fang-Cheng Liang & Baoshan Tang & Hashina , 2025. "Recyclable self-secreting autonomous healing dielectrics for millisecond water quality sensing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Jeong-Chan Lee & Su Yeong Kim & Jayeon Song & Hyowon Jang & Min Kim & Hanul Kim & Siyoung Q. Choi & Sunjoo Kim & Pawan Jolly & Taejoon Kang & Steve Park & Donald E. Ingber, 2024. "Micrometer-thick and porous nanocomposite coating for electrochemical sensors with exceptional antifouling and electroconducting properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Feng Li & Baocai Zhang & Xizi Long & Huan Yu & Sicheng Shi & Zixuan You & Qijing Liu & Chao Li & Rui Tang & Shengbo Wu & Xingjuan An & Yuanxiu Li & Liang Shi & Kenneth H. Nealson & Hao Song, 2025. "Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62256-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.