IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62228-5.html
   My bibliography  Save this article

High-precision time-domain stereoscopic imaging with a femtosecond electro-optic comb

Author

Listed:
  • Zijian Wang

    (East China Normal University)

  • Hui Ma

    (East China Normal University)

  • Jingwei Luo

    (East China Normal University)

  • Ming Yan

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Kun Huang

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Jianan Fang

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Jinman Ge

    (CAST Xi’an)

  • Heping Zeng

    (East China Normal University
    Chongqing Institute of East China Normal University
    CAST Xi’an
    Jinan Institute of Quantum Technology)

Abstract

Stereoscopy harnesses two spatially offset cameras to mimic human vision for depth perception, enabling 3D optical imaging for various remote sensing applications. However, its depth precision and accuracy are limited by insufficient spatial resolving power. Achieving high precision alongside extensive measurable ranges and high-speed measuring capabilities has long been a challenge in 3D imaging. To address this, we introduce time-domain stereoscopy, a concept inspired by space-time duality in optics. Specifically, it employs two temporally offset optical gating cameras to capture time-domain parallax signals, enabling rapid and precise time-of-flight measurements for depth retrieval. Leveraging two advanced technologies—femtosecond electro-optical comb synthesis and nonlinear optical sampling—this method achieves sub-100-nanometer depth precision across multimeter-scale imaging ranges and supports millisecond-scale displacement and velocity measurements for 47 million spatial points simultaneously. As such, it provides a versatile tool for applications in surface metrology, mechanical dynamics, and precision manufacturing.

Suggested Citation

  • Zijian Wang & Hui Ma & Jingwei Luo & Ming Yan & Kun Huang & Jianan Fang & Jinman Ge & Heping Zeng, 2025. "High-precision time-domain stereoscopic imaging with a femtosecond electro-optic comb," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62228-5
    DOI: 10.1038/s41467-025-62228-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62228-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62228-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Viacheslav Snigirev & Annina Riedhauser & Grigory Lihachev & Mikhail Churaev & Johann Riemensberger & Rui Ning Wang & Anat Siddharth & Guanhao Huang & Charles Möhl & Youri Popoff & Ute Drechsler & Dan, 2023. "Ultrafast tunable lasers using lithium niobate integrated photonics," Nature, Nature, vol. 615(7952), pages 411-417, March.
    2. Bingzhao Li & Qixuan Lin & Mo Li, 2023. "Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering," Nature, Nature, vol. 620(7973), pages 316-322, August.
    3. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Wang & Yifei Wang & Baoqi Shi & Wei Sun & Changxi Yang & Junqiu Liu & Chengying Bao, 2025. "Nanometric dual-comb ranging using photon-level microcavity solitons," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Qixuan Lin & Shucheng Fang & Yue Yu & Zichen Xi & Linbo Shao & Bingzhao Li & Mo Li, 2025. "Optical multi-beam steering and communication using integrated acousto-optics arrays," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    4. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yifan Qi & Xingyu Jia & Jingyi Wang & Weiwei Yang & Yihan Miao & Xinlun Cai & Guanhao Wu & Yang Li, 2025. "1.79-GHz acquisition rate absolute distance measurement with lithium niobate electro-optic comb," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Thomas Bunel & Julien Lumeau & Antonin Moreau & Arnaud Fernandez & Olivier Llopis & Germain Bourcier & Auro M. Perego & Matteo Conforti & Arnaud Mussot, 2025. "Brillouin-induced Kerr frequency comb in normal dispersion fiber Fabry Perot resonators," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    10. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Xiaomin Lv & Binbin Nie & Chen Yang & Rui Ma & Ze Wang & Yanwu Liu & Xing Jin & Kaixuan Zhu & Zhenyu Chen & Du Qian & Guanyu Zhang & Guowei Lv & Qihuang Gong & Fang Bo & Qi-Fan Yang, 2025. "Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Hulin Yao & Pengcheng Zheng & Shibin Zhang & Chuanjie Hu & Xiaoli Fang & Liping Zhang & Dan Ling & Huanyang Chen & Xin Ou, 2024. "Twist piezoelectricity: giant electromechanical coupling in magic-angle twisted bilayer LiNbO3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Hu, Deng-wang & Wang, Fei & Li, Jia-cheng & Deng, Tao & Wu, Jia-gui & Wu, Zheng-mao & Xia, Guang-qiong, 2024. "Wideband chaotic comb source using a weak-resonant-cavity Fabry-Perot laser diode subject to optical feedback for parallel random number generation," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Heze Zhang & Chao Zeng & Yueqing Du & Guanghua Cheng & Biqiang Jiang & Zhipei Sun & Xuechun Lin & Meng Pang & Jianlin Zhao & Dong Mao, 2025. "On-demand tailoring soliton patterns through intracavity spectral phase programming," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Yaowen Hu & Yunxiang Song & Xinrui Zhu & Xiangwen Guo & Shengyuan Lu & Qihang Zhang & Lingyan He & Cornelis A. A. Franken & Keith Powell & Hana Warner & Daniel Assumpcao & Dylan Renaud & Ying Wang & L, 2025. "Integrated lithium niobate photonic computing circuit based on efficient and high-speed electro-optic conversion," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Gregory Moille & Edgar F. Perez & Jordan R. Stone & Ashutosh Rao & Xiyuan Lu & Tahmid Sami Rahman & Yanne K. Chembo & Kartik Srinivasan, 2021. "Ultra-broadband Kerr microcomb through soliton spectral translation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Anton Lukashchuk & Halil Kerim Yildirim & Andrea Bancora & Grigory Lihachev & Yang Liu & Zheru Qiu & Xinru Ji & Andrey Voloshin & Sunil A. Bhave & Edoardo Charbon & Tobias J. Kippenberg, 2024. "Photonic-electronic integrated circuit-based coherent LiDAR engine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62228-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.