Author
Listed:
- Qi Yu
(Fudan University
Shanghai Innovation Institute)
- Dong H. Zhang
(Fudan University
Chinese Academy of Sciences)
- Joel M. Bowman
(Emory University and Cherry L. Emerson Center for Scientific Computation)
Abstract
Recent experiments have demonstrated that vibrational strong coupling (VSC) between molecular vibrations and the optical cavity field can modify vibrational energy transfer (VET) processes in molecular systems. However, the underlying mechanisms and the behavior of individual molecules under collective VSC remain largely incomplete. In this work, we combine state-of-the-art quantum vibrational spectral calculation, quantum wavepacket dynamics simulations, and ab initio machine-learning potential to elucidate how the vibrational dynamics of water OH stretches can be altered by VSC. Taking the $${({{{{\rm{H}}}}}_{2}{{{\rm{O}}}})}_{21}$$ ( H 2 O ) 21 -cavity system as an example, we show that the collective VSC breaks the localization picture, promotes the delocalization of OH stretches, and opens new intermolecular vibrational energy pathways involving both neighboring and remote water molecules. The manipulation of the VET process relies on the alignment of the transition dipole moment orientations of the corresponding vibrational states. The emergence of new energy transfer pathways is found to be attributed to cavity-induced vibrational resonance involving OH stretches across different water molecules, along with alterations in mode coupling patterns.
Suggested Citation
Qi Yu & Dong H. Zhang & Joel M. Bowman, 2025.
"Theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62117-x
DOI: 10.1038/s41467-025-62117-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62117-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.