IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35363-6.html
   My bibliography  Save this article

Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity

Author

Listed:
  • Christian Schäfer

    (Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics
    The Hamburg Center for Ultrafast Imaging
    Chalmers University of Technology
    Chalmers University of Technology)

  • Johannes Flick

    (Flatiron Institute
    Harvard University
    City College of New York
    City University of New York)

  • Enrico Ronca

    (Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR))

  • Prineha Narang

    (Harvard University
    University of California, Los Angeles)

  • Angel Rubio

    (Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics
    The Hamburg Center for Ultrafast Imaging
    Flatiron Institute)

Abstract

Strong light–matter interaction in cavity environments is emerging as a promising approach to control chemical reactions in a non-intrusive and efficient manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained unclear, hampering progress in this frontier area of research. We leverage quantum-electrodynamical density-functional theory to unveil the microscopic mechanism behind the experimentally observed reduced reaction rate under cavity induced resonant vibrational strong light-matter coupling. We observe multiple resonances and obtain the thus far theoretically elusive but experimentally critical resonant feature for a single strongly coupled molecule undergoing the reaction. While we describe only a single mode and do not explicitly account for collective coupling or intermolecular interactions, the qualitative agreement with experimental measurements suggests that our conclusions can be largely abstracted towards the experimental realization. Specifically, we find that the cavity mode acts as mediator between different vibrational modes. In effect, vibrational energy localized in single bonds that are critical for the reaction is redistributed differently which ultimately inhibits the reaction.

Suggested Citation

  • Christian Schäfer & Johannes Flick & Enrico Ronca & Prineha Narang & Angel Rubio, 2022. "Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35363-6
    DOI: 10.1038/s41467-022-35363-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35363-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35363-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oluwafemi S. Ojambati & Rohit Chikkaraddy & William D. Deacon & Matthew Horton & Dean Kos & Vladimir A. Turek & Ulrich F. Keyser & Jeremy J. Baumberg, 2019. "Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Javier Galego & Francisco J. Garcia-Vidal & Johannes Feist, 2016. "Suppressing photochemical reactions with quantized light fields," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    3. Jorge A. Campos-Gonzalez-Angulo & Raphael F. Ribeiro & Joel Yuen-Zhou, 2019. "Resonant catalysis of thermally activated chemical reactions with vibrational polaritons," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Xinyang Li & Arkajit Mandal & Pengfei Huo, 2021. "Cavity frequency-dependent theory for vibrational polariton chemistry," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lachlan P. Lindoy & Arkajit Mandal & David R. Reichman, 2023. "Quantum dynamical effects of vibrational strong coupling in chemical reactivity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Fabijan Pavošević & Robert L. Smith & Angel Rubio, 2023. "Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Qi Yu & Joel M. Bowman, 2023. "Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Yu & Joel M. Bowman, 2023. "Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Lachlan P. Lindoy & Arkajit Mandal & David R. Reichman, 2023. "Quantum dynamical effects of vibrational strong coupling in chemical reactivity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Connor K. Terry Weatherly & Justin Provazza & Emily A. Weiss & Roel Tempelaar, 2023. "Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Sindhana Pannir-Sivajothi & Jorge A. Campos-Gonzalez-Angulo & Luis A. Martínez-Martínez & Shubham Sinha & Joel Yuen-Zhou, 2022. "Driving chemical reactions with polariton condensates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Raj Pandya & Richard Y. S. Chen & Qifei Gu & Jooyoung Sung & Christoph Schnedermann & Oluwafemi S. Ojambati & Rohit Chikkaraddy & Jeffrey Gorman & Gianni Jacucci & Olimpia D. Onelli & Tom Willhammar &, 2021. "Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Fabijan Pavošević & Robert L. Smith & Angel Rubio, 2023. "Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Chiao-Yu Cheng & Nina Krainova & Alyssa N. Brigeman & Ajay Khanna & Sapana Shedge & Christine Isborn & Joel Yuen-Zhou & Noel C. Giebink, 2022. "Molecular polariton electroabsorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35363-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.