IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62111-3.html
   My bibliography  Save this article

PFKM phosphorylates histone H3 and promotes mitotic progression by sensing the levels of citrate

Author

Listed:
  • Pianpian Lin

    (Shanghai Institute of Biochemistry and Cell Biology)

  • Yijun Qi

    (University of Chinese Academy of Sciences)

  • Huiying Chu

    (Liaoning Normal University)

  • Hongyu Wu

    (Shanghai Institute of Biochemistry and Cell Biology)

  • Yajuan Zhang

    (Shanghai Institute of Biochemistry and Cell Biology)

  • Xiaolan Huang

    (University of Chinese Academy of Sciences)

  • Chen Li

    (Shanghai Jiao Tong University School of Medicine)

  • Xiaoyan Xu

    (Westlake University)

  • Hong Gao

    (Shanghai Institute of Biochemistry and Cell Biology)

  • Rong Zeng

    (Shanghai Institute of Biochemistry and Cell Biology
    ShanghaiTech University
    Chinese Academy of Sciences
    ShanghaiTech University)

  • Guohui Li

    (Liaoning Normal University)

  • Weiwei Yang

    (Shanghai Institute of Biochemistry and Cell Biology
    University of Chinese Academy of Sciences
    Shanghai Academy of Natural Sciences (SANS))

Abstract

Emerging evidence indicates that metabolic signals—including nutrient availability, biosynthetic intermediates, and energy balance—are linked to cell cycle progression. However, how these signals are sensed by the cell cycle machinery remains unclear. Citrate, a key intermediate in the TCA cycle, peaks during mitosis (M phase) and is detected by the glycolytic enzyme ATP-dependent 6-phosphofructokinase 1 muscle isoform (PFKM), accelerating mitotic progression. Mechanistically, citrate binds PFKM, disrupting its tetrameric structure into dimers. Dimeric PFKM interacts with nucleosomes and phosphorylates histone H3 at serine 10 (H3S10), functioning as a protein kinase to promote mitosis and cell proliferation. Structural simulations reveal that PFKM binds nucleosomes optimally when H3S10 aligns with its catalytic site. Disrupting citrate-PFKM or PFKM-H3 interactions reduces H3S10 phosphorylation, delays mitosis, and suppresses tumor growth and T-cell proliferation. Our findings demonstrate that PFKM acts as a citrate sensor, coupling metabolic signals to cell cycle regulation.

Suggested Citation

  • Pianpian Lin & Yijun Qi & Huiying Chu & Hongyu Wu & Yajuan Zhang & Xiaolan Huang & Chen Li & Xiaoyan Xu & Hong Gao & Rong Zeng & Guohui Li & Weiwei Yang, 2025. "PFKM phosphorylates histone H3 and promotes mitotic progression by sensing the levels of citrate," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62111-3
    DOI: 10.1038/s41467-025-62111-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62111-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62111-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Bradley A. Webb & Farhad Forouhar & Fu-En Szu & Jayaraman Seetharaman & Liang Tong & Diane L. Barber, 2015. "Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations," Nature, Nature, vol. 523(7558), pages 111-114, July.
    3. Jin Suk Park & Christoph J. Burckhardt & Rossana Lazcano & Luisa M. Solis & Tadamoto Isogai & Linqing Li & Christopher S. Chen & Boning Gao & John D. Minna & Robert Bachoo & Ralph J. DeBerardinis & Ga, 2020. "Mechanical regulation of glycolysis via cytoskeleton architecture," Nature, Nature, vol. 578(7796), pages 621-626, February.
    4. Toru Hirota & Jesse J. Lipp & Ban-Hock Toh & Jan-Michael Peters, 2005. "Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin," Nature, Nature, vol. 438(7071), pages 1176-1180, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Subhamoy Dasgupta & Kimal Rajapakshe & Bokai Zhu & Bryan C. Nikolai & Ping Yi & Nagireddy Putluri & Jong Min Choi & Sung Y. Jung & Cristian Coarfa & Thomas F. Westbrook & Xiang H.-F. Zhang & Charles E, 2018. "Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer," Nature, Nature, vol. 556(7700), pages 249-254, April.
    7. Weihai Liu & Yun Wang & Luiz H. M. Bozi & Patrick D. Fischer & Mark P. Jedrychowski & Haopeng Xiao & Tao Wu & Narek Darabedian & Xiadi He & Evanna L. Mills & Nils Burger & Sanghee Shin & Anita Reddy &, 2023. "Lactate regulates cell cycle by remodelling the anaphase promoting complex," Nature, Nature, vol. 616(7958), pages 790-797, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    4. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    8. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Weizhu Huang & Nan Jin & Jia Guo & Cangsong Shen & Chanjuan Xu & Kun Xi & Léo Bonhomme & Robert B. Quast & Dan-Dan Shen & Jiao Qin & Yi-Ru Liu & Yuxuan Song & Yang Gao & Emmanuel Margeat & Philippe Ro, 2024. "Structural basis of orientated asymmetry in a mGlu heterodimer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Yue Pang & Yating Qin & Zeyu Du & Qun Liu & Jin Zhang & Kai Han & Jiali Lu & Zengbao Yuan & Jun Li & Shanshan Pan & Xinrui Dong & Mengyang Xu & Dantong Wang & Shuo Li & Zhen Li & Yadong Chen & Zhishen, 2025. "Single-cell transcriptome atlas of lamprey exploring Natterin- induced white adipose tissue browning," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zhao-Shan Chen & Hsiang-Chi Huang & Xiangkun Wang & Karin Schön & Yane Jia & Michael Lebens & Danica F. Besavilla & Janarthan R. Murti & Yanhong Ji & Aishe A. Sarshad & Guohua Deng & Qiyun Zhu & David, 2025. "Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62111-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.