Author
Listed:
- Carolin J. Klose
(Technical University of Munich
Max Planck Institute of Biochemistry)
- Kevin M. Meighen-Berger
(Technical University of Munich)
- Martin Kulke
(Technical University of Munich)
- Marina Parr
(Technical University of Munich)
- Barbara Steigenberger
(Max Planck Institute of Biochemistry)
- Martin Zacharias
(Technical University of Munich)
- Dmitrij Frishman
(Technical University of Munich)
- Matthias J. Feige
(Technical University of Munich)
Abstract
Structure formation of membrane proteins is error-prone and thus requires chaperones that oversee this essential process in cell biology. The ER membrane protein complex (EMC) is well-defined as a transmembrane domain (TMD) insertase. In this study, we characterize an additional chaperone function of the EMC. We use interactomics and systematic studies with model proteins to comprehensively define client features for this EMC chaperone mode. Based on this data, we develop a machine learning-based tool for client prediction. Mechanistically, our study reveals that the EMC engages TMDs via its EMC1 subunit and modulates their orientation within the lipid bilayer. Productive TMD assembly reduces binding to the EMC chaperone site. Taken together, our study provides detailed insights into an EMC chaperone function, further establishing the role of the EMC as a multifunctional molecular machine in membrane protein biogenesis.
Suggested Citation
Carolin J. Klose & Kevin M. Meighen-Berger & Martin Kulke & Marina Parr & Barbara Steigenberger & Martin Zacharias & Dmitrij Frishman & Matthias J. Feige, 2025.
"The EMC acts as a chaperone for membrane proteins,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62109-x
DOI: 10.1038/s41467-025-62109-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62109-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.