IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62107-z.html
   My bibliography  Save this article

PEAK1 maintains tight junctions in intestinal epithelial cells and resists colitis by inhibiting autophagy-mediated ZO-1 degradation

Author

Listed:
  • Zaikuan Zhang

    (Chongqing Medical University
    Chongqing University)

  • Yajun Xie

    (Chongqing Medical University
    Western Institute of Digital-Intelligent Medicine)

  • Qiying Yi

    (Chongqing Medical University)

  • Jianing Liu

    (Karolinska Institutet
    Karolinska University Hospital)

  • Lin Yang

    (Chongqing Medical University)

  • Runzhi Wang

    (Harbin Medical University)

  • Jing Cai

    (Harbin Medical University)

  • Xinyi Li

    (Chongqing Medical University)

  • Xiaosong Feng

    (Chongqing Medical University)

  • Shixiang Yao

    (Southwest University)

  • Zheng Pan

    (Chongqing Medical University)

  • Magdalena Paolino

    (Karolinska Institutet
    Karolinska University Hospital)

  • Qin Zhou

    (Chongqing Medical University
    Harbin Medical University)

Abstract

Tight junctions are crucial for maintaining intestinal barrier homeostasis, but how organisms modulate these junctions remain unclear. Here, we show a role for PEAK1 at cell-cell contact sites, where it interacts with ZO-1 via a conserved region spanning amino acids 714-731. This interaction masks the LC3-interacting region on ZO-1, preventing autophagy-mediated ZO-1 degradation and preserving the integrity of tight junctions in intestinal epithelial cells. Src-mediated phosphorylation of PEAK1 at Y724 promotes the binding between PEAK1 and ZO-1 to stabilize ZO-1 in intestinal epithelial cells. Additionally, PEAK1 binds to CSK to positively regulate Src activity. Loss of PEAK1 in intestinal epithelial cells leads to decreased Src activity and lower ZO-1 protein levels, resulting in disrupted tight junctions, both in vitro and in vivo. In mice, Peak1 deficiency increases intestinal epithelium permeability and exacerbates inflammation in experimentally induced colitis models. Our findings reveal PEAK1’s critical role in maintaining tight junction integrity and resistance to intestinal inflammation, extending its known function from promoting tumor cell proliferation and migration to essential physiological processes. These insights refine our understanding of the mechanisms regulating tight junctions and offer potential therapeutic targets for enhancing epithelial barrier function and treating related diseases.

Suggested Citation

  • Zaikuan Zhang & Yajun Xie & Qiying Yi & Jianing Liu & Lin Yang & Runzhi Wang & Jing Cai & Xinyi Li & Xiaosong Feng & Shixiang Yao & Zheng Pan & Magdalena Paolino & Qin Zhou, 2025. "PEAK1 maintains tight junctions in intestinal epithelial cells and resists colitis by inhibiting autophagy-mediated ZO-1 degradation," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62107-z
    DOI: 10.1038/s41467-025-62107-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62107-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62107-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Afnan Abu-Thuraia & Marie-Anne Goyette & Jonathan Boulais & Carine Delliaux & Chloé Apcher & Céline Schott & Rony Chidiac & Halil Bagci & Marie-Pier Thibault & Dominique Davidson & Mathieu Ferron & An, 2020. "AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    2. Daqian Xu & Zheng Wang & Yan Xia & Fei Shao & Weiya Xia & Yongkun Wei & Xinjian Li & Xu Qian & Jong-Ho Lee & Linyong Du & Yanhua Zheng & Guishuai Lv & Jia-shiun Leu & Hongyang Wang & Dongming Xing & T, 2020. "The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis," Nature, Nature, vol. 580(7804), pages 530-535, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Ye & Yi Liu & Guiji Zhang & Haijun Deng & Xiaojun Wang & Lin Tuo & Chang Chen & Xuanming Pan & Kang Wu & Jiangao Fan & Qin Pan & Kai Wang & Ailong Huang & Ni Tang, 2023. "Deficiency of gluconeogenic enzyme PCK1 promotes metabolic-associated fatty liver disease through PI3K/AKT/PDGF axis activation in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Xue Yang & Xiuquan Ma & Tianyue Zhao & David R. Croucher & Elizabeth V. Nguyen & Kimberley C. Clark & Changyuan Hu & Sharissa L. Latham & Charles Bayly-Jones & Bao V. Nguyen & Srikanth Budnar & Sung-Y, 2025. "Activation of CAMK2 by pseudokinase PEAK1 represents a targetable pathway in triple negative breast cancer," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    3. Naoya Yamada & Tadayoshi Karasawa & Junya Ito & Daisuke Yamamuro & Kazushi Morimoto & Toshitaka Nakamura & Takanori Komada & Chintogtokh Baatarjav & Yuma Saimoto & Yuka Jinnouchi & Kazuhisa Watanabe &, 2024. "Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Josefine Radke & Elisa Schumann & Julia Onken & Randi Koll & Güliz Acker & Bohdan Bodnar & Carolin Senger & Sascha Tierling & Markus Möbs & Peter Vajkoczy & Anna Vidal & Sandra Högler & Petra Kodajova, 2022. "Decoding molecular programs in melanoma brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    5. Xiaofen Li & Yanni Wu & Yuhao Wang & Xiaozhi Yang & Rui Gao & Qinyue Lu & Xiaoyang Lv & Zhi Chen, 2024. "The Molecular Mechanism of circRNA-11228/miR-103/INSIG1 Pathway Regulating Milk Fat Synthesis in Bovine Mammary Epithelial Cells," Agriculture, MDPI, vol. 14(4), pages 1-15, March.
    6. Guillaume Serwe & David Kachaner & Jessica Gagnon & Cédric Plutoni & Driss Lajoie & Eloïse Duramé & Malha Sahmi & Damien Garrido & Martin Lefrançois & Geneviève Arseneault & Marc K. Saba-El-Leil & Syl, 2023. "CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Yabo Zhou & Dianheng Wang & Li Zhou & Nannan Zhou & Zhenfeng Wang & Jie Chen & Ruiyang Pang & Haixia Fu & Qiusha Huang & Fang Dong & Hui Cheng & Huafeng Zhang & Ke Tang & Jingwei Ma & Jiadi Lv & Tao C, 2024. "Cell softness renders cytotoxic T lymphocytes and T leukemic cells resistant to perforin-mediated killing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Le Yu & Yu Deng & Xiaodong Wang & Charlene Santos & Ian J. Davis & H. Shelton Earp & Pengda Liu, 2024. "Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Michael J. Roy & Minglyanna G. Surudoi & Ashleigh Kropp & Jianmei Hou & Weiwen Dai & Joshua M. Hardy & Lung-Yu Liang & Thomas R. Cotton & Bernhard C. Lechtenberg & Toby A. Dite & Xiuquan Ma & Roger J., 2023. "Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Gaoxiang Zhao & Shudi Luo & Hong Zhao & Qingxia Ma & Hongfei Jiang & Lin Wang & Juanjuan Liu & Dong Guo & Runze Wang & Qianqian Xu & Jie Lun & Ranran Xie & Yixin Duan & Leina Ma & Wensheng Qiu & Jing , 2025. "Nucleus-translocated glucokinase functions as a protein kinase to phosphorylate TAZ and promote tumour growth," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62107-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.