IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62007-2.html
   My bibliography  Save this article

Dual-bond fracture metamaterials with full-field extrinsic toughening

Author

Listed:
  • Zhiqiang Meng

    (50 Nanyang Avenue)

  • Peidong Lei

    (Tsinghua University)

  • Boyuan Hou

    (50 Nanyang Avenue)

  • Bin Liu

    (Tsinghua University)

  • Yifan Wang

    (50 Nanyang Avenue)

Abstract

Fracture resistance presents a pivotal challenge in mechanical metamaterials, as traditional designs often fail to mitigate crack propagation and enhance energy dissipation. Despite efforts to enlarge the fracture process zone, energy dissipation remains highly localized near the crack tip, restricting improvements in fracture toughness. This study introduces dual-bond fracture metamaterials that integrate weak and strong bonds to achieve full-field energy dissipation before crack propagation. Through the sequential breaking of weak bonds and the formation of plastic hinges, these materials redistribute stress across the entire structure, significantly expanding the fracture process zone and enhancing toughness. The specific fracture energy, a metric we propose to characterize structural fracture resistance, is governed by extrinsic energy dissipation and scales linearly with specimen size. Additionally, the concept of an equivalent force concentration factor is introduced to characterize fracture behavior in dual-bond fracture metamaterials. Gradient designs further enable asymmetric fracture sensitivity and surface crack shielding, thereby improving resilience in defect-prone environments. These metamaterials offer versatility, with potential applications in protective nets, shock absorbers, and blast containment vessels. Finally, the dual-bond design can be realized with a variety of materials, highlighting its generality and broad applicability for diverse engineering applications.

Suggested Citation

  • Zhiqiang Meng & Peidong Lei & Boyuan Hou & Bin Liu & Yifan Wang, 2025. "Dual-bond fracture metamaterials with full-field extrinsic toughening," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62007-2
    DOI: 10.1038/s41467-025-62007-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62007-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62007-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Yue & Xiaohao Sun & Luxia Yu & Mingzhe Li & S. Macrae Montgomery & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kyung-In Jang & Ha Uk Chung & Sheng Xu & Chi Hwan Lee & Haiwen Luan & Jaewoong Jeong & Huanyu Cheng & Gwang-Tae Kim & Sang Youn Han & Jung Woo Lee & Jeonghyun Kim & Moongee Cho & Fuxing Miao & Yiyuan , 2015. "Soft network composite materials with deterministic and bio-inspired designs," Nature Communications, Nature, vol. 6(1), pages 1-11, May.
    3. Kaijin Wu & Zhaoqiang Song & Mengqi Liu & Zewen Wang & Si-Ming Chen & Shu-Hong Yu & Linghui He & Yong Ni, 2025. "Distorting crack-front geometry for enhanced toughness by manipulating bioinspired heterogeneity," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    5. Steven W. Cranford & Anna Tarakanova & Nicola M. Pugno & Markus J. Buehler, 2012. "Nonlinear material behaviour of spider silk yields robust webs," Nature, Nature, vol. 482(7383), pages 72-76, February.
    6. Wenfeng Liu & Shahram Janbaz & David Dykstra & Bernard Ennis & Corentin Coulais, 2024. "Harnessing plasticity in sequential metamaterials for ideal shock absorption," Nature, Nature, vol. 634(8035), pages 842-847, October.
    7. Paramita Das & Jani-Markus Malho & Khosrow Rahimi & Felix H. Schacher & Baochun Wang & Dan Eugen Demco & Andreas Walther, 2015. "Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    8. Zhenyang Gao & Xiaolin Zhang & Yi Wu & Minh-Son Pham & Yang Lu & Cunjuan Xia & Haowei Wang & Hongze Wang, 2024. "Damage-programmable design of metamaterials achieving crack-resisting mechanisms seen in nature," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Ryan L. Truby & Jennifer A. Lewis, 2016. "Printing soft matter in three dimensions," Nature, Nature, vol. 540(7633), pages 371-378, December.
    10. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. J. B. Berger & H. N. G. Wadley & R. M. McMeeking, 2017. "Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness," Nature, Nature, vol. 543(7646), pages 533-537, March.
    12. Corentin Coulais & Alberico Sabbadini & Fré Vink & Martin Hecke, 2018. "Multi-step self-guided pathways for shape-changing metamaterials," Nature, Nature, vol. 561(7724), pages 512-515, September.
    13. Jianxiang Cheng & Rong Wang & Zechu Sun & Qingjiang Liu & Xiangnan He & Honggeng Li & Haitao Ye & Xingxin Yang & Xinfeng Wei & Zhenqing Li & Bingcong Jian & Weiwei Deng & Qi Ge, 2022. "Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Yaohui Wang & Haitao Ye & Jian He & Qi Ge & Yi Xiong, 2024. "Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Caicong Li & Jianxiang Cheng & Yunfeng He & Xiangnan He & Ziyi Xu & Qi Ge & Canhui Yang, 2023. "Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. An Wei & Qian Wang & Jupen Liu & Yuchan Huang & Haoxiang Li & Zhenhao Zhu & Tao Wang & You Yu, 2025. "Co-initiating-system dual-mechanism drives the design of printable entangled polymer multinetworks," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Fenghou Yuan & Huitang Qi & Binghui Song & Yuntian Cui & Junsheng Zhang & Huan Liu & Bo Liu & Hai Lei & Tian Liu, 2025. "Tailorable biosensors for real-time monitoring of stress distribution in soft biomaterials and living tissues," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Gang Lu & Rui Ma & Yuanyuan Zhao & Dianyu Wang & Wentao Shang & Huaguo Chen & Shahid Ali Khan & Ming Li & Eduardo Saiz, 2025. "Solution-sheared supramolecular oligomers with enhanced thermal resistance in interfacial adhesion and bulk cohesion," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Lili Liu & Ding Zhang & Peijia Bai & Yanjie Fang & Jiaqi Guo & Qi Li & Rujun Ma, 2025. "Fatigue-resistant and super-tough thermocells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Amin Farzaneh & Nikhil Pawar & Carlos M. Portela & Jonathan B. Hopkins, 2022. "Sequential metamaterials with alternating Poisson’s ratios," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Shixiang Zhou & Yijing Zhao & Kaixi Zhang & Yanran Xun & Xueyu Tao & Wentao Yan & Wei Zhai & Jun Ding, 2024. "Impact-resistant supercapacitor by hydrogel-infused lattice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Henri Savolainen & Negar Hosseiniyan & Mario Piedrahita-Bello & Olli Ikkala, 2025. "Bioinspired nondissipative mechanical energy storage and release in hydrogels via hierarchical sequentially swollen stretched chains," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    19. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62007-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.