IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61927-3.html
   My bibliography  Save this article

Transcriptomic decoding of surface-based imaging phenotypes and its application to pharmacotranscriptomics

Author

Listed:
  • Christine Ecker

    (University Hospital of the Goethe University
    King’s College London
    Goethe University Frankfurt)

  • Charlotte M. Pretzsch

    (King’s College London)

  • Johanna Leyhausen

    (University Hospital of the Goethe University
    Goethe University Frankfurt
    Goethe University Frankfurt)

  • Lisa M. Berg

    (University Hospital of the Goethe University)

  • Caroline Gurr

    (University Hospital of the Goethe University
    Goethe University Frankfurt)

  • Hanna Seelemeyer

    (University Hospital of the Goethe University
    Goethe University Frankfurt)

  • Grainne McAlonan

    (King’s College London)

  • Nicolaas A. Puts

    (King’s College London)

  • Eva Loth

    (King’s College London)

  • Flavio Dell’Aqua

    (King’s College London)

  • Luke Mason

    (King’s College London)

  • Tony Charman

    (King’s College London)

  • Bethany Oakley

    (King’s College London)

  • Thomas Bourgeron

    (University de Paris)

  • Christian Beckmann

    (Radboud University Medical Centre)

  • Jan K. Buitelaar

    (Radboud University Medical Centre)

  • Celso Arango

    (CIBERSAM)

  • Tobias Banaschewski

    (partner site Mannheim-Heidelberg-Ulm)

  • Andreas G. Chiocchetti

    (University Hospital of the Goethe University)

  • Christine M. Freitag

    (University Hospital of the Goethe University)

  • Elke Hattingen

    (University Hospital of the Goethe University)

  • Dilja Krueger-Burg

    (University Medical Center of the Johannes Gutenberg-University)

  • Michael J. Schmeisser

    (University Medical Center of the Johannes Gutenberg-University)

  • Jonathan Repple

    (Goethe University Frankfurt
    University Hospital of the Goethe University Frankfurt
    Theodor-Stern-Kai 7
    University of Münster)

  • Andreas Reif

    (University Hospital of the Goethe University Frankfurt
    Theodor-Stern-Kai 7)

  • Declan G. Murphy

    (King’s College London)

Abstract

Imaging transcriptomics has become a power tool for linking imaging-derived phenotypes (IDPs) to genomic mechanisms. Yet, its potential for guiding CNS drug discovery remains underexplored. Here, utilizing spatially-dense representations of the human brain transcriptome, we present an analytical framework for the transcriptomic decoding of high-resolution surface-based neuroimaging patterns, and for linking IDPs to the transcriptomic landscape of complex neurotransmission systems in vivo. Leveraging publicly available Positron Emission Tomography (PET) data, we initially validated our approach against molecular targets with a high correspondence between gene expression and protein binding. Subsequently, we used the cortical gene expression profiles of candidate genes to dissect two discrete classes of GABAA-receptor subunits, each characterized by a distinct cortical expression pattern, and to link these to specific behavioural symptoms and traits. Our approach thus represents a future avenue for in vivo pharmacotranscriptomics that may guide the development of targeted pharmacotherapies and personalized interventions.

Suggested Citation

  • Christine Ecker & Charlotte M. Pretzsch & Johanna Leyhausen & Lisa M. Berg & Caroline Gurr & Hanna Seelemeyer & Grainne McAlonan & Nicolaas A. Puts & Eva Loth & Flavio Dell’Aqua & Luke Mason & Tony Ch, 2025. "Transcriptomic decoding of surface-based imaging phenotypes and its application to pharmacotranscriptomics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61927-3
    DOI: 10.1038/s41467-025-61927-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61927-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61927-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Hawrylycz & Ed S. Lein & Angela L. Guillozet-Bongaarts & Elaine H. Shen & Lydia Ng & Jeremy A. Miller & Louie N. van de Lagemaat & Kimberly A. Smith & Amanda Ebbert & Zackery L. Riley & Chr, 2012. "An anatomically comprehensive atlas of the adult human brain transcriptome," Nature, Nature, vol. 489(7416), pages 391-399, September.
    2. Edith Hofer & Gennady V. Roshchupkin & Hieab H. H. Adams & Maria J. Knol & Honghuang Lin & Shuo Li & Habil Zare & Shahzad Ahmad & Nicola J. Armstrong & Claudia L. Satizabal & Manon Bernard & Joshua C., 2020. "Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    3. Hyo Jung Kang & Yuka Imamura Kawasawa & Feng Cheng & Ying Zhu & Xuming Xu & Mingfeng Li & André M. M. Sousa & Mihovil Pletikos & Kyle A. Meyer & Goran Sedmak & Tobias Guennel & Yurae Shin & Matthew B., 2011. "Spatio-temporal transcriptome of the human brain," Nature, Nature, vol. 478(7370), pages 483-489, October.
    4. Ben D. Fulcher & Aurina Arnatkeviciute & Alex Fornito, 2021. "Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Zongchang Du & Congying Chu & Weiyang Shi & Na Luo & Yuheng Lu & Haiyan Wang & Bokai Zhao & Hui Xiong & Zhengyi Yang & Tianzi Jiang, 2025. "Connectome-constrained ligand-receptor interaction analysis for understanding brain network communication," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    6. Lin Jiang & Sarah Genon & Jiayu Ye & Yan Zhu & Guangying Wang & Runyang He & Pedro A. Valdes-Sosa & Feng Wan & Dezhong Yao & Simon B. Eickhoff & Debo Dong & Fali Li & Peng Xu, 2025. "Gene transcription, neurotransmitter, and neurocognition signatures of brain structural-functional coupling variability," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    7. Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Melissa Thalhammer & Jakob Seidlitz & Antonia Neubauer & Aurore Menegaux & Benita Schmitz-Koep & Maria A. Di Biase & Julia Schulz & Lena Dorfschmidt & Richard A. I. Bethlehem & Aaron Alexander-Bloch &, 2025. "Heterogeneous, temporally consistent, and plastic brain development after preterm birth," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    9. G. Ball & S. Oldham & V. Kyriakopoulou & L. Z. J. Williams & V. Karolis & A. Price & J. Hutter & M. L. Seal & A. Alexander-Bloch & J. V. Hajnal & A. D. Edwards & E. C. Robinson & J. Seidlitz, 2024. "Molecular signatures of cortical expansion in the human foetal brain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Jun Ding & Jian Ji & Zachary Rabow & Tong Shen & Jacob Folz & Christopher R. Brydges & Sili Fan & Xinchen Lu & Sajjan Mehta & Megan R. Showalter & Ying Zhang & Renee Araiza & Lynette R. Bower & K. C. , 2021. "A metabolome atlas of the aging mouse brain," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Stuart Oldham & Gareth Ball, 2023. "A phylogenetically-conserved axis of thalamocortical connectivity in the human brain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Junjiao Feng & Liang Zhang & Chunhui Chen & Jintao Sheng & Zhifang Ye & Kanyin Feng & Jing Liu & Ying Cai & Bi Zhu & Zhaoxia Yu & Chuansheng Chen & Qi Dong & Gui Xue, 2022. "A cognitive neurogenetic approach to uncovering the structure of executive functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Anna Gui & Anja Hollowell & Emilie M. Wigdor & Morgan J. Morgan & Laurie J. Hannigan & Elizabeth C. Corfield & Veronika Odintsova & Jouke-Jan Hottenga & Andrew Wong & René Pool & Harriet Cullen & Siân, 2025. "Genome-wide association meta-analysis of age at onset of walking in over 70,000 infants of European ancestry," Nature Human Behaviour, Nature, vol. 9(7), pages 1470-1487, July.
    18. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    19. Marie Filiatrault & Violette Ayral & Christina Tremblay & Celine Haddad & Véronique Daneault & Alexandre Pastor-Bernier & Jean-François Gagnon & Ronald B. Postuma & Petr Dušek & Stanislav Mareček & Zs, 2025. "Estrogen-related receptor gene expression associates with sex differences in cortical atrophy in isolated REM sleep behavior disorder," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    20. Meeli Mullari & Nicolas Fossat & Niels H. Skotte & Andrea Asenjo-Martinez & David T. Humphreys & Jens Bukh & Agnete Kirkeby & Troels K. H. Scheel & Michael L. Nielsen, 2023. "Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61927-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.