IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61918-4.html
   My bibliography  Save this article

Pseudo-spin light circuits in nonlinear photonic crystals

Author

Listed:
  • Ofir Yesharim

    (Tel Aviv University)

  • Shani Izhak

    (Tel Aviv University)

  • Ady Arie

    (Tel Aviv University)

Abstract

Guiding light forms the backbone of numerous photonic circuits that allow complex, robust, and miniaturized light control. Commonly, guiding is achieved by modifying linear permittivity, resulting in a non-homogeneous linear medium. Here, we propose and experimentally realize photonic circuits in a homogeneous refractive index medium, where the guiding is driven entirely by nonlinear interaction, enabling dual-wavelength light beam guidance and optical control. This mechanism is analogous to spin current transport in sharp magnetic domain walls, where magnetization texture constitutes a spin-dependent potential. Using narrow custom-poled nonlinear photonic crystals, we guide frequency superposition beams that act as pseudo-spins over more than four Rayleigh lengths. We show that guiding properties depend on the relative phase between participating wavelengths, which can be optically switched on and off with an optical pump. Additionally, using two parallel-poled structures, we experimentally realize a pseudo-spin directional coupler, paving the way for numerous waveguiding hallmarks in a single nonlinear crystal and offering robust control over frequency superposition states of light. Finally, our findings show that it is possible to experimentally emulate complex, precise 2D magnetization domain wall structures, opening avenues for exploration that remain challenging in magnetic materials.

Suggested Citation

  • Ofir Yesharim & Shani Izhak & Ady Arie, 2025. "Pseudo-spin light circuits in nonlinear photonic crystals," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61918-4
    DOI: 10.1038/s41467-025-61918-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61918-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61918-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. D. Joannopoulos & Pierre R. Villeneuve & Shanhui Fan, 1997. "Photonic crystals: putting a new twist on light," Nature, Nature, vol. 386(6621), pages 143-149, March.
    2. J. D. Joannopoulos & Pierre R. Villeneuve & Shanhui Fan, 1997. "Erratum: Photonic crystals: putting a new twist on light," Nature, Nature, vol. 387(6635), pages 830-830, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. W. Belhadj & N. Ben Ali & H. Dakhlaoui & O. H. Alsalmi & H. Alsaif & A. Torchani, 2021. "Characterization of spectral features of cavity modes in one-dimensional graphene-based photonic crystal structures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-11, October.
    3. Kyung Ik Sim & Jae Hoon Kim & Byung Cheol Park, 2025. "Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Juan Xue & Xuewu Yin & Lulu Xue & Chenglin Zhang & Shihua Dong & Li Yang & Yuanlai Fang & Yong Li & Ling Li & Jiaxi Cui, 2022. "Self-growing photonic composites with programmable colors and mechanical properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Alaa M. Abd-Elnaiem & Zain Elabdeen A. Mohamed & Sayed Elshahat & Mohamed Almokhtar & Małgorzata Norek, 2023. "Recent Progress in the Fabrication of Photonic Crystals Based on Porous Anodic Materials," Energies, MDPI, vol. 16(10), pages 1-32, May.
    9. Dimitris Bertsimas & Omid Nohadani, 2010. "Robust optimization with simulated annealing," Journal of Global Optimization, Springer, vol. 48(2), pages 323-334, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61918-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.