IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61560-0.html
   My bibliography  Save this article

YY1 enhances HIF-1α stability in tumor-associated macrophages to suppress anti-tumor immunity of prostate cancer in mice

Author

Listed:
  • Wenchao Li

    (Southeast University)

  • SaiSai Chen

    (Southeast University
    University of Science and Technology of China)

  • Jian Lu

    (Southeast University)

  • Weipu Mao

    (Southeast University)

  • Shiya Zheng

    (Southeast University)

  • Minhao Zhang

    (Xishan People’s Hospital of Wuxi City)

  • Tiange Wu

    (Southeast University)

  • Yurui Chen

    (Southeast University)

  • Kai Lu

    (Southeast University)

  • Chunyan Chu

    (Southeast University)

  • Chuanjun Shu

    (Nanjing Medical University)

  • Yue Hou

    (Xi’an Jiaotong University)

  • Xue Yang

    (Southeast University)

  • Naipeng Shi

    (Northern Jiangsu People’s Hospital)

  • Zhijun Chen

    (The First Affiliated Hospital of Bengbu Medical University)

  • Lihua Zhang

    (Southeast University)

  • Lei Zhang

    (Southeast University)

  • Rong Na

    (The University of Hong Kong)

  • Ming Chen

    (Southeast University)

  • Shenghong Ju

    (Southeast University)

  • Dingxiao Zhang

    (Hunan University)

  • Yi Ma

    (China Pharmaceutical University)

  • Bin Xu

    (Southeast University
    Southeast University)

Abstract

Immune checkpoint therapy for prostate cancer (PCa), a classic ‘immune-cold’ tumor characterized by an immunosuppressive tumor microenvironment, failed previously in clinical trials, but the underlying causes remain elusive. Here we find that YY1+, immunosuppressive macrophages aggregate in the hypoxic areas of PCa. Mechanistically, hypoxia promotes the phase separation of YY1 in the nucleus, where YY1 binds to NUSAP1 and promotes the SUMOylation, phase separation and stabilization of HIF-1α. Either myeloid-specific conditional knockout of YY1 or a treatment with tenapanor for decreasing the YY1–NUSAP1–HIF-1α interaction impairs subcutaneous PCa tumor formation in mouse prostate tumor models. Lastly, a first-generation tetrahedral DNA nanostructure based on the proteolysis targeting chimera technique, termed YY1-DcTAC, allows targeting and degrading YY1 in tumor-associated macrophages for inducing antitumor effects and CD8+ T cell tumor infiltration in mouse tumor models. In summary, our findings underscore the pivotal role of YY1 in the hypoxia/HIF-1α pathway in tumor-associated macrophages and support the targeting of YY1 for treating PCa.

Suggested Citation

  • Wenchao Li & SaiSai Chen & Jian Lu & Weipu Mao & Shiya Zheng & Minhao Zhang & Tiange Wu & Yurui Chen & Kai Lu & Chunyan Chu & Chuanjun Shu & Yue Hou & Xue Yang & Naipeng Shi & Zhijun Chen & Lihua Zhan, 2025. "YY1 enhances HIF-1α stability in tumor-associated macrophages to suppress anti-tumor immunity of prostate cancer in mice," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61560-0
    DOI: 10.1038/s41467-025-61560-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61560-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61560-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huilong Yin & Xiang Zhang & Pengyuan Yang & Xiaofang Zhang & Yingran Peng & Da Li & Yanping Yu & Ye Wu & Yidi Wang & Jinbao Zhang & Xiaochen Ding & Xiangpeng Wang & Angang Yang & Rui Zhang, 2021. "RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Li Zhou & Bin Yu & Mengqiu Gao & Rui Chen & Zhiyu Li & Yueqing Gu & Jinlei Bian & Yi Ma, 2023. "DNA framework-engineered chimeras platform enables selectively targeted protein degradation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jeong Hyun Ahn & Eric S. Davis & Timothy A. Daugird & Shuai Zhao & Ivana Yoseli Quiroga & Hidetaka Uryu & Jie Li & Aaron J. Storey & Yi-Hsuan Tsai & Daniel P. Keeley & Samuel G. Mackintosh & Ricky D. , 2021. "Phase separation drives aberrant chromatin looping and cancer development," Nature, Nature, vol. 595(7868), pages 591-595, July.
    5. Ming Zhao & Yu Yu & Li-Ming Sun & Jia-Qing Xing & Tingting Li & Yunkai Zhu & Miao Wang & Yin Yu & Wen Xue & Tian Xia & Hong Cai & Qiu-Ying Han & Xiaoyao Yin & Wei-Hua Li & Ai-Ling Li & Jiuwei Cui & Zh, 2021. "GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Susmitha Ambadipudi & Jacek Biernat & Dietmar Riedel & Eckhard Mandelkow & Markus Zweckstetter, 2017. "Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Chen & Xinyao Shi & Xiangrui Yao & Tong Gao & Guangyu Huang & Duo Ning & Zemin Cao & Youxin Xu & Weizheng Liang & Simon Zhongyuan Tian & Qionghua Zhu & Liang Fang & Meizhen Zheng & Yuhui Hu & Huan, 2024. "Specific multivalent molecules boost CRISPR-mediated transcriptional activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jiang Ren & Shuai Wang & Zhi Zong & Ting Pan & Sijia Liu & Wei Mao & Huizhe Huang & Xiaohua Yan & Bing Yang & Xin He & Fangfang Zhou & Long Zhang, 2024. "TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Ningning Zan & Jiao Li & Jiahui Yao & Shang Wu & Jianzhuan Li & Feifei Chen & Baoan Song & Runjiang Song, 2025. "Rational design of phytovirucide inhibiting nucleocapsid protein aggregation in tomato spotted wilt virus," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Guilherme G. Moreira & François-Xavier Cantrelle & Andrea Quezada & Filipa S. Carvalho & Joana S. Cristóvão & Urmi Sengupta & Nicha Puangmalai & Ana P. Carapeto & Mário S. Rodrigues & Isabel Cardoso &, 2021. "Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Emanuele Zippo & Dorothee Dormann & Thomas Speck & Lukas S. Stelzl, 2025. "Molecular simulations of enzymatic phosphorylation of disordered proteins and their condensates," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Cory M. Nadel & Saugat Pokhrel & Kristin Wucherer & Abby Oehler & Aye C. Thwin & Koli Basu & Matthew D. Callahan & Daniel R. Southworth & Daniel A. Mordes & Charles S. Craik & Jason E. Gestwicki, 2024. "Phosphorylation of tau at a single residue inhibits binding to the E3 ubiquitin ligase, CHIP," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Wei Tan & Sihua Cheng & Yingying Li & Xiao-Yang Li & Ning Lu & Jingxian Sun & Guiyue Tang & Yujiao Yang & Kezhu Cai & Xuefei Li & Xijun Ou & Xiang Gao & Guo-Ping Zhao & W. Seth Childers & Wei Zhao, 2022. "Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Ruixue Xu & Lirong Lin & Zhiwei Jiao & Rui Liang & Yazhen Guo & Yixin Zhang & Xiaoxu Shang & Yuezhou Wang & Xu Wang & Luming Yao & Shengfa Liu & Xianming Deng & Jing Yuan & Xin-zhuan Su & Jian Li, 2024. "Deaggregation of mutant Plasmodium yoelii de-ubiquitinase UBP1 alters MDR1 localization to confer multidrug resistance," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Di Yu & Yingying Liang & Claudia Kim & Anbalagan Jaganathan & Donglei Ji & Xinye Han & Xuelan Yang & Yanjie Jia & Ruirui Gu & Chunyu Wang & Qiang Zhang & Ka Lung Cheung & Ming-Ming Zhou & Lei Zeng, 2023. "Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Xiuxiao Tang & Pengguihang Zeng & Kezhi Liu & Li Qing & Yifei Sun & Xinyi Liu & Lizi Lu & Chao Wei & Jia Wang & Shaoshuai Jiang & Jun Sun & Wakam Chang & Haopeng Yu & Hebing Chen & Jiaguo Zhou & Cheng, 2024. "The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Cristina Leoni & Marian Bataclan & Taku Ito-Kureha & Vigo Heissmeyer & Silvia Monticelli, 2023. "The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Selina Troester & Thomas Eder & Nadja Wukowits & Martin Piontek & Pablo Fernández-Pernas & Johannes Schmoellerl & Ben Haladik & Gabriele Manhart & Melanie Allram & Margarita Maurer-Granofszky & Nastas, 2025. "Transcriptional and epigenetic rewiring by the NUP98::KDM5A fusion oncoprotein directly activates CDK12," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    18. Changmiao Guo & Raymundo Alfaro-Aco & Chunting Zhang & Ryan W. Russell & Sabine Petry & Tatyana Polenova, 2023. "Structural basis of protein condensation on microtubules underlying branching microtubule nucleation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Yinliang Zhang & Chunyuan Du & Wei Wang & Wei Qiao & Yuhui Li & Yujie Zhang & Sufang Sheng & Xuenan Zhou & Lei Zhang & Heng Fan & Ying Yu & Yong Chen & Yunfei Liao & Shihong Chen & Yongsheng Chang, 2024. "Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61560-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.