IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61439-0.html
   My bibliography  Save this article

Suppression of multiple mouse models of refractory malignancies by reprogramming IL-18 ligand-receptor interaction

Author

Listed:
  • Zhen Fan

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Ying Liu

    (The Third Affiliated Hospital of Sun Yat-sen University)

  • Xueying Lin

    (Sun Yat-sen University)

  • Jifu Zhang

    (Sun Yat-sen University)

  • Jiehong Chen

    (Sun Yat-sen University)

  • Shiming Yi

    (Sun Yat-sen University)

  • Cheng Hu

    (The Third Affiliated Hospital of Sun Yat-sen University)

  • Xincheng Liu

    (Sun Yat-sen University)

  • Cui Guo

    (Sun Yat-sen University)

  • Cuiying Xu

    (Sun Yat-sen University)

  • Xiaoyu Chen

    (Sun Yat-sen University)

  • Xuyan Tian

    (Sun Yat-sen University)

  • Xuanming Liang

    (Sun Yat-sen University)

  • Yang Liu

    (Sun Yat-sen University)

  • Linyi Hu

    (Sun Yat-sen University)

  • Shanyu Huang

    (Sun Yat-sen University)

  • Li Guo

    (Sun Yat-sen University)

  • Wenbo Zhu

    (Sun Yat-sen University)

  • Jun Hu

    (Sun Yat-sen University)

  • Guangmei Yan

    (Sun Yat-sen University)

  • Yuan Lin

    (Sun Yat-sen University)

  • Jing Cai

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Jiankai Liang

    (Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Achieving a cure is an urgent need for patients with advanced solid tumors. Here, we discover that oncolytic virus (OV) infection enhances IL-18 receptor expression but fails to increase IL-18 ligand expression. Therefore, we engineer armed oncolytic alphavirus M1 expressing wild-type IL-18 (wtIL-18) or a mutant variant (mutIL-18) that evades IL-18 binding protein (IL-18BP) while maintaining IL-18 receptor (IL-18R) binding. Intravenous administration of M1-mutIL-18 suppresses the growth of multiple advanced solid tumors in C57BL/6 and BALB/c mouse models and promotes long-term systemic immune memory. Mechanistically, armed M1-mutIL-18 enhances directed clonal expansion and differentiation of CD8+ T cells and sustains IFN-γ production. Thus, armed M1-mutIL-18 promotes dendritic cell (DC) activation, priming and activation of CD8+ T cells in lymphatic organs, and infiltration of IL-18R+ CD8+ T cells in the tumor microenvironment, establishing a positive feedback loop. We further show that a PD-L1 inhibitor enhances the anti-tumor efficacy of mutIL-18 OVs. These results highlight the importance of the IL-18 pathway in oncolytic virus therapy and implicate reprogramming ligand-receptor interaction as an effective strategy for immunotherapy.

Suggested Citation

  • Zhen Fan & Ying Liu & Xueying Lin & Jifu Zhang & Jiehong Chen & Shiming Yi & Cheng Hu & Xincheng Liu & Cui Guo & Cuiying Xu & Xiaoyu Chen & Xuyan Tian & Xuanming Liang & Yang Liu & Linyi Hu & Shanyu H, 2025. "Suppression of multiple mouse models of refractory malignancies by reprogramming IL-18 ligand-receptor interaction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61439-0
    DOI: 10.1038/s41467-025-61439-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61439-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61439-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Khan & Josephine R. Giles & Sierra McDonald & Sasikanth Manne & Shin Foong Ngiow & Kunal P. Patel & Michael T. Werner & Alexander C. Huang & Katherine A. Alexander & Jennifer E. Wu & John Attanas, 2019. "TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion," Nature, Nature, vol. 571(7764), pages 211-218, July.
    2. Dmitriy Zamarin & Rikke B. Holmgaard & Jacob Ricca & Tamar Plitt & Peter Palese & Padmanee Sharma & Taha Merghoub & Jedd D. Wolchok & James P. Allison, 2017. "Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    3. Ting Zhou & William Damsky & Orr-El Weizman & Meaghan K. McGeary & K. Patricia Hartmann & Connor E. Rosen & Suzanne Fischer & Ruaidhri Jackson & Richard A. Flavell & Jun Wang & Miguel F. Sanmamed & Ma, 2020. "IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy," Nature, Nature, vol. 583(7817), pages 609-614, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hideki Ogura & Jin Gohda & Xiuyuan Lu & Mizuki Yamamoto & Yoshio Takesue & Aoi Son & Sadayuki Doi & Kazuyuki Matsushita & Fumitaka Isobe & Yoshihiro Fukuda & Tai-Ping Huang & Takamasa Ueno & Naomi Mam, 2022. "Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Feng Xie & Xiaoxue Zhou & Peng Su & Heyu Li & Yifei Tu & Jinjin Du & Chen Pan & Xiang Wei & Min Zheng & Ke Jin & Liyan Miao & Chao Wang & Xuli Meng & Hans Dam & Peter Dijke & Long Zhang & Fangfang Zho, 2022. "Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Siqi Chen & Yingyu Wang & Jessica Dang & Nuozi Song & Xiaoxin Chen & Jinhui Wang & Guo N. Huang & Christine E. Brown & Jianhua Yu & Irving L. Weissman & Steven T. Rosen & Mingye Feng, 2025. "CAR macrophages with built-In CD47 blocker combat tumor antigen heterogeneity and activate T cells via cross-presentation," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    5. Hao Wu & Xiufeng Zhao & Sophia M. Hochrein & Miriam Eckstein & Gabriela F. Gubert & Konrad Knöpper & Ana Maria Mansilla & Arman Öner & Remi Doucet-Ladevèze & Werner Schmitz & Bart Ghesquière & Sebasti, 2023. "Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Víctor Albarrán-Fernández & Laura Angelats & Julio Delgado & Alena Gros & Álvaro Urbano-Ispizua & Sònia Guedan & Aleix Prat, 2025. "Unlocking the potential of engineered immune cell therapy for solid tumors," Nature Communications, Nature, vol. 16(1), pages 1-5, December.
    7. Emily N. Neubert & Julia M. DeRogatis & Sloan A. Lewis & Karla M. Viramontes & Pedro Ortega & Monique L. Henriquez & Rémi Buisson & Ilhem Messaoudi & Roberto Tinoco, 2023. "HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Kateryna Onyshchenko & Ren Luo & Elena Guffart & Simone Gaedicke & Anca-Ligia Grosu & Elke Firat & Gabriele Niedermann, 2023. "Expansion of circulating stem-like CD8+ T cells by adding CD122-directed IL-2 complexes to radiation and anti-PD1 therapies in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. William H. Tomaszewski & Jessica Waibl-Polania & Molly Chakraborty & Jonathan Perera & Jeremy Ratiu & Alexandra Miggelbrink & Donald P. McDonnell & Mustafa Khasraw & David M. Ashley & Peter E. Fecci &, 2022. "Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Aurélie Durand & Nelly Bonilla & Théo Level & Zoé Ginestet & Amélie Lombès & Vincent Guichard & Mathieu Germain & Sébastien Jacques & Franck Letourneur & Marcio Cruzeiro & Carmen Marchiol & Gilles Ren, 2024. "Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Yi Liu & Brian Debo & Mingfeng Li & Zhennan Shi & Wanqiang Sheng & Yang Shi, 2021. "LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Leticia Laura Niborski & Paul Gueguen & Mengliang Ye & Allan Thiolat & Rodrigo Nalio Ramos & Pamela Caudana & Jordan Denizeau & Ludovic Colombeau & Raphaël Rodriguez & Christel Goudot & Jean-Michel Lu, 2022. "CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Julie Noguerol & Karl Laviolette & Margot Zahm & Adeline Chaubet & Ambrine Sahal & Claire Détraves & Romain Torres & Clothilde Demont & Véronique Adoue & Carine Joffre & Florence Cammas & Joost PM Mee, 2025. "Heterochromatic gene silencing controls CD4+ T cell susceptibility to regulatory T cell-mediated suppression in a murine allograft model," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    14. Tereza Dvorakova & Veronica Finisguerra & Matteo Formenti & Axelle Loriot & Loubna Boudhan & Jingjing Zhu & Benoit J. Van den Eynde, 2024. "Enhanced tumor response to adoptive T cell therapy with PHD2/3-deficient CD8 T cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Kun Wei & Ruifeng Li & Xiaohong Zhao & Bowen Xie & Tian Xie & Qinli Sun & Yongzhen Chen & Peng Wei & Wei Xu & Xinyi Guo & Zixuan Zhao & Han Feng & Ling Ni & Chen Dong, 2025. "TRIM28 is an essential regulator of three-dimensional chromatin state underpinning CD8+ T cell activation," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    16. Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Tina Sarén & Giulia Saronio & Paula Marti Torrell & Xu Zhu & Josefin Thelander & Yasmin Andersson & Camilla Hofström & Marika Nestor & Anna Dimberg & Helena Persson & Mohanraj Ramachandran & Di Yu & M, 2023. "Complementarity-determining region clustering may cause CAR-T cell dysfunction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Sonali Jindal & Nathan D. Pennock & Duanchen Sun & Wesley Horton & Michelle K. Ozaki & Jayasri Narasimhan & Alexandra Q. Bartlett & Sheila Weinmann & Paul E. Goss & Virginia F. Borges & Zheng Xia & Pe, 2021. "Postpartum breast cancer has a distinct molecular profile that predicts poor outcomes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Ugur Uslu & Lijun Sun & Sofia Castelli & Amanda V. Finck & Charles-Antoine Assenmacher & Regina M. Young & Zhijian J. Chen & Carl H. June, 2024. "The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Oluwagbemiga A. Ojo & Hongxing Shen & Jennifer T. Ingram & James A. Bonner & Robert S. Welner & Georges Lacaud & Allan J. Zajac & Lewis Z. Shi, 2025. "Gfi1 controls the formation of effector-like CD8+ T cells during chronic infection and cancer," Nature Communications, Nature, vol. 16(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61439-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.