IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61432-7.html
   My bibliography  Save this article

Narrow-spectrum resource-utilizing bacteria drive the stability of synthetic communities through enhancing metabolic interactions

Author

Listed:
  • Wei Wang

    (Nanjing Agricultural University)

  • Yanwei Xia

    (Nanjing Agricultural University)

  • Panpan Zhang

    (Nanjing Agricultural University)

  • Mengqing Zhu

    (Nanjing Agricultural University)

  • Shiyi Huang

    (Nanjing Agricultural University)

  • Xinli Sun

    (Nanjing Agricultural University)

  • Zhihui Xu

    (Nanjing Agricultural University)

  • Nan Zhang

    (Nanjing Agricultural University)

  • Weibing Xun

    (Nanjing Agricultural University)

  • Qirong Shen

    (Nanjing Agricultural University)

  • Youzhi Miao

    (Nanjing Agricultural University)

  • Ruifu Zhang

    (Nanjing Agricultural University)

Abstract

The importance of synthetic microbial communities in agriculture is increasingly recognized, yet methods for constructing targeted communities using existing microbial resources remain limited. Here, six plant-beneficial bacterial strains with distinct functions and rhizosphere resource utilization profiles are selected to construct stable, multifunctional communities for plant growth promotion. Metabolic modeling reveals that narrower resource utilization correlates with increased metabolic interaction potential and reduced metabolic resource overlap, contributing to greater community stability. Integrated analyses further consistently confirm the central roles of narrow-spectrum resource-utilizing strains, Cellulosimicrobium cellulans E and Pseudomonas stutzeri G, which form metabolic interaction networks via secretion of asparagine, vitamin B12, isoleucine, and their precursors or derivatives. Two synthetic communities, SynCom4 and SynCom5, have high stability in the tomato rhizosphere and increase plant dry weight by over 80%. Our study elucidates the relationship between resource utilization width and community stability, providing a rational strategy for designing stable, multifunctional microbial communities for specific habitats.

Suggested Citation

  • Wei Wang & Yanwei Xia & Panpan Zhang & Mengqing Zhu & Shiyi Huang & Xinli Sun & Zhihui Xu & Nan Zhang & Weibing Xun & Qirong Shen & Youzhi Miao & Ruifu Zhang, 2025. "Narrow-spectrum resource-utilizing bacteria drive the stability of synthetic communities through enhancing metabolic interactions," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61432-7
    DOI: 10.1038/s41467-025-61432-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61432-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61432-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Bai & Daniel B. Müller & Girish Srinivas & Ruben Garrido-Oter & Eva Potthoff & Matthias Rott & Nina Dombrowski & Philipp C. Münch & Stijn Spaepen & Mitja Remus-Emsermann & Bruno Hüttel & Alice C., 2015. "Functional overlap of the Arabidopsis leaf and root microbiota," Nature, Nature, vol. 528(7582), pages 364-369, December.
    2. Zhepu Ruan & Kai Chen & Weimiao Cao & Lei Meng & Bingang Yang & Mengjun Xu & Youwen Xing & Pengfa Li & Shiri Freilich & Chen Chen & Yanzheng Gao & Jiandong Jiang & Xihui Xu, 2024. "Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Lewi Stone, 2020. "The stability of mutualism," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Theodore A. Kennedy & Shahid Naeem & Katherine M. Howe & Johannes M. H. Knops & David Tilman & Peter Reich, 2002. "Biodiversity as a barrier to ecological invasion," Nature, Nature, vol. 417(6889), pages 636-638, June.
    6. Behzad D. Karkaria & Alex J. H. Fedorec & Chris P. Barnes, 2021. "Automated design of synthetic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Jaeyun Sung & Seunghyeon Kim & Josephine Jill T. Cabatbat & Sungho Jang & Yong-Su Jin & Gyoo Yeol Jung & Nicholas Chia & Pan-Jun Kim, 2017. "Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    8. Kevin R. Foster & Jonas Schluter & Katharine Z. Coyte & Seth Rakoff-Nahoum, 2017. "The evolution of the host microbiome as an ecosystem on a leash," Nature, Nature, vol. 548(7665), pages 43-51, August.
    9. Alan R. Pacheco & Mauricio Moel & Daniel Segrè, 2019. "Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    10. Zhiwei Zhou & Mingdu Luo & Haosong Zhang & Yandong Yin & Yuping Cai & Zheng-Jiang Zhu, 2022. "Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shikai La & Jiafan Li & Si Ma & Xingqun Liu & Lihong Gao & Yongqiang Tian, 2024. "Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Lucas Hemmerle & Benjamin A. Maier & Miriam Bortfeld-Miller & Birgitta Ryback & Christoph G. Gäbelein & Martin Ackermann & Julia A. Vorholt, 2022. "Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Shengbo Wu & Jie Feng & Chunjiang Liu & Hao Wu & Zekai Qiu & Jianjun Ge & Shuyang Sun & Xia Hong & Yukun Li & Xiaona Wang & Aidong Yang & Fei Guo & Jianjun Qiao, 2022. "Machine learning aided construction of the quorum sensing communication network for human gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Benjamin H. Good & Layton B. Rosenfeld, 2023. "Eco-evolutionary feedbacks in the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Qiannan Peng & Cheng Zhao & Xiaopeng Wang & Kelin Cheng & Congcong Wang & Xihui Xu & Lu Lin, 2025. "Modeling bacterial interactions uncovers the importance of outliers in the coastal lignin-degrading consortium," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Vanessa R. Marcelino & Caitlin Welsh & Christian Diener & Emily L. Gulliver & Emily L. Rutten & Remy B. Young & Edward M. Giles & Sean M. Gibbons & Chris Greening & Samuel C. Forster, 2023. "Disease-specific loss of microbial cross-feeding interactions in the human gut," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Joseph George Ray & Prasanthkumar Santhakumaran & Santhoshkumar Kookal, 2021. "Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 259-290, January.
    9. Zu-Xing Wang & Zheng-Sheng He & Wei-Ming He, 2021. "Nighttime climate warming enhances inhibitory effects of atmospheric nitrogen deposition on the success of invasive Solidago canadensis," Climatic Change, Springer, vol. 167(1), pages 1-15, July.
    10. C. E. Dubé & M. Ziegler & A. Mercière & E. Boissin & S. Planes & C. A. -F. Bourmaud & C. R. Voolstra, 2021. "Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Wenqiang Wang & Wenxiao Wang & Shuang Yu & Hongmei Zhang & Junlong Yang & Xiaowei Li, 2024. "Structural Characteristics and Driving Factors of Rhizosphere Microbial Communities in the Rhizosphere of Six Stipa Species Across the Ningxia Steppe," Sustainability, MDPI, vol. 16(23), pages 1-19, November.
    12. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    13. Kaixuan Pan & Merijn Moens & Leon Marshall & Ellen Cieraad & Geert R de Snoo & Koos Biesmeijer, 2021. "Importance of natural land cover for plant species’ conservation: A nationwide study in The Netherlands," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-25, November.
    14. Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Abbasi, Eeman & Akçay, Erol, 2024. "Host control and species interactions jointly determine microbiome community structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 185-194.
    17. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Pierre Dupraz & Karine Latouche & Nadine Turpin, 2007. "Programmes agri-environnementaux en présence d’effets de seuil," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 82, pages 5-32.
    20. Yang Gao & Mingdu Luo & Hongmiao Wang & Zhiwei Zhou & Yandong Yin & Ruohong Wang & Beizi Xing & Xiaohua Yang & Yuping Cai & Zheng-Jiang Zhu, 2025. "Charting unknown metabolic reactions by mass spectrometry-resolved stable-isotope tracing metabolomics," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61432-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.